

TRS-80® MODEL 4/4P TECHNICAL REFERENCE MANUAL

CAT. NO. 26-2119

TRSDOS* Version 6.2.0 Operating System:
© 1984 Logical Systems.
Licensed to Tandy Corporation
All Rights Reserved

Model 4/4P Technical Reference Manual; Software Part: § 1985 Tandy Corporation and Logical Systems All Rights Reserved

Reproduction or use, without express written permission from Tandy Corporation of any portion of this manual is prohibited While reasonable efforts have been taken in the preparation of this manual to assure its accuracy. Tandy Corporation assumes no liability resulting from any errors or omissions in this manual, or from the use of the information contained herein

TRSDOS is a registered trademark of Tandy Corporation

10 9 8 7 6 5 4 3 2 1

HARDWARE HARDWARE

Part 1 / Hardware

SECTION I	
1.1	Model 4 Theory of Operation
1.1.1	Introduction
1.1.2	CPU and Timing
1.1.3	Buffering
1.1.4	Address Decoding
1.1.5	ROM
1.1.6	RAM
1.1.7	Keyboard
1.1.8	Video
1.1.9	Real Time Clock
1.1.10	Cassette Circuitry
1.1.11	Printer Circuitry
1.1.12	I/O Connectors
1.1.13	Sound Option
1.2	Model 4 I/O BUS
1.3	Port Bits
SECTION II.	
2.1	Model 4 Gate Array Theory of Operation
2.1.1	Introduction
2.1.2	Reset Circuit
2.1.3	CPU
2.1.4	System Timing and Control Register
215	Address Decode
2.1.6	ROM
2.1.7	RAM
2.1.8	Video Circuit
2.1.9	Keyboard
2.1.10	Real Time Clock
2.1.11	Line Printer Port
2 1 12	Graphics Port
2.1.13	Sound Port
2.1.14	I/O Bus
2.1.15	Cassette Circuit
2.1.16	FDC Circuit
2.1.17	RS-232C Circuit
SECTION III	
3.1	
3.1	Model 4P Theory of Operation
3.1.2	Introduction
3.1.3	Reset Circuit
3.1.4	CPU
3.1.5	System Timing
3.1.6	Address Decode
3.1.7	ROM
3.1.7	RAM
3.1.9	Video Circuit
3.1.10	Keyboard
3.1.10	Real Time Clock
3.1.12	Line Printer Port
3.1.12	Graphics Port
3.1.13	Sound
3.1.14	I/O Bus Port
3.1.15	FDC Circuit
3.1.10	RS-232C Circuit

SECTION IV .	
4.2	4P Gate Array Theory of Operation
4.2.1	Introduction
4.2.2	Reset Circuit
4.2.3	CPU
4.2.4	System Timing
4.2.5	Address Decode
4.2.6	ROM
4.2.7	RAM
4.2.8	Video Circuit
4.2.9	Keyboard
4.2.10	Real Time Clock
4.2.11	Line Printer Port
4.2.12	Graphics Port
4.2.13	Sound
4.2.14	1/O Bus Port
4.2.15	FDC Circuit
4.2.16	RS-232C Circuit
SECTION V	Chip Specifications

INDEX

SECTION I 4 THEORY OF OPERATION

1.1 MODEL 4 THEORY OF OPERATION

1.1.1 Introduction

The TRS-80 Model 4 Microcomputer is a self-contained desktop microcomputer designed not only to be completely software compatible with the TRS-80 Model III, but to provide many enhancements and features. System distinctions which enable the Model 4 to be Model III compatible include: a Z80 CPU capable of running at a 4 MHz clock rate, BASIC operating system in ROM (14K), memory-mapped keyboard, 64-character by 16-line memory-mapped video display, up to 128K Random Access Memory, cassette circuitry able to operate at 500 or 1500 baud, and the ability to accept a variety of options. These options include: one to four 5-1/4 inch double density floppy disk drives, one to four five megabyte hard disk drives, an RS-232 Serial Communications Interface, and a 640 by 240 pixel high resolution graphics board.

1.1.2 CPU and Timing

The central processing unit of the Model 4 microcomputer is the Z80-A microprocessor — capable of running at either a two (2.02752) or four (4.05504) MHz clock rate. The main CPU timing comes from the 20 MHz (20.2752 MHz) crystal-controlled oscillator, Y1 and Q1. There is an additional 12 MHz (12.672 MHz) oscillator, Y2 and Q2, which is necessary for the 80 by 24 mode of video operation. The oscillator outputs are sent to two Programmable Array Logic (PAL) circuits, U3 and U4, for frequency division and routing of appropriate timing signals.

PAL U3 divides the 20 MHz signal by five for 4 MHz CPU operation, by ten for a 2 MHz rate, and slows the 4 MHz clock for the M1 Cycle (See Figure 1-3) U3 also divides the master clock by four to obtain a 5 MHz clock to be sent to the RS-232 option connector as a reference for the baud rate generator. PAL U4 selects an appropriate 10 MHz or 12 MHz clock for the video shift clock, and using divider U5 provides additional timing signals to the video display circuitry (See Fig. 1-4).

Hex latch U18 is clocked from the 20 MHz clock, and is used to provide MUX and CAS timing for the dynamic

memory circuits. Also, with additional gates from U16, U19, U20, U31, and U32, this chip provides the wait circuitry necessary to prevent the CPU from accessing video RAM during the active portion of the display. This is done by latching the data for the video RAM and simultaneously forcing the Z80 CPU into a "WAIT" state and is necessary to eliminate undesirable "hashing" of the video display (See Fig. 1-4).

1.1.3 Buffering

Low level signals from and to the CPU need to be buffered, or current amplified in order to drive many other circuits. The 16 address lines are buffered by U55 and U56, which are unidirectional buffers that are permanently enabled. The eight data lines are buffered by U71. Since data must flow both to and from the CPU, U71 is a bi-directional buffer which can go into a three-state condition when not in use. Both direction and enable controls come from the address decoding section.

The clock signal to the CPU (from PAL U3) is buffered by active pullup circuit Q3 RESET and WAIT inputs to the CPU are buffered by U17 and U46. Control outputs from the Z80 (M1*, RD*, WR*, MREQ*, and IORQ*) are sent to PAL U58, which combines these into other appropriate control signals consistent with Model 4's architecture. Other than MREQ*, which is buffered by part of U38, the raw control signals go to no other components, and hence require no additional buffering.

1.1.4 Address Decoding

The address decoding section is divided into two subsections: Port address decoding and Memory address decoding.

In port address decoding, low order address lines (some combined through a portion of U32) are sent to the address and enable inputs of U48, U49, and U50. U48 is also enabled by the IN* signal, which means that is decodes port input signals, while U49 decodes port output signals. A table of the resulting port map is shown below:

Read Function	Write Function	
Cassette In, Mode Read	Cassette Out, resets cassette data latch	
Read Printer Status	Output to Printer	
- reserved -	Drive Select latch	
FDC Data Reg.	FDC Data Reg.	
FDC Sector Reg.	FDC Sector Reg.	
FDC Track Reg.	FDC Track Reg.	
	Cassette In, Mode Read Read Printer Status - reserved - FDC Data Reg. FDC Sector Reg.	

FIGURE 1-1. MODEL 4 BLOCK DIAGRAM

(1) FØ FDC Status Reg. EC · EF Resets RTC Int. (2) EB Rovr Holding Reg. (2) EA UART Status Reg. (2) E9 - reserved -(2) E8 Modem Status E4 - E7 Read NMI Status E0 - E3 Read INT Status (3) CF **HD** Status (3) CE HD Size/Drv/Hd (3) CD HD Cylinder high (3) CC HD Cylinder low (3) CB **HD Sector Number** (3) CA **HD Sector Count** (3) C9 HD Error Reg. (3) C8 HD Data Reg. (3) C7 HD CTC channel 3 (3) C6 HD CTC channel 2 (3) C5 HD CTC channel 1 (3) C4 HD CTC channel 0 (3) C2 - C3 HD Device ID Reg. (3) C1 HD Control Reg. (3) CO HD Wr. Prot. Reg. 94 - 9F - reserved -(4) 90 - 93 - reserved -(5) 8C - 8F Graphics Sel. 2 88 CRTC Data Reg. 88 CRTC Control Reg. 89 CRTC Data Reg. 88 CRTC Control Reg 84 - 87 - reserved -(5) 83 - reserved -(5) 82 - reserved -(5) 81 Graphics Ram Rd (5) 80 - reserved -

FDC Command Reg. Mode Output latch Xmit Holding Reg. UART/Modem control Baud Rate Register Master Reset/Enable UART control reg. Write NMI Mask reg. Write INT Mask reg. **HD** Command HD Size/Drv/Hd HD Cylinder high HD Cylinder low **HD Sector Number HD Sector Count** HD Write Precomp. HD Data Reg. HD CTC channel 3 HD CTC channel 2 HD CTC channel 1 HD CTC channel 0 - reserved -HD Control Reg. - reserved -· reserved -Sound Option Graphics Sel. 2 CRTC Data Reg. CRTC Control Reg. CRTC Data Reg. CRTC Control Reg. Options Register Gra. X Reg. Write Gra. Y Reg. Write Graphics Ram Wr.

Gra. Options Reg. Wr

Notes: (1) Valid only if FDC option is installed

(2) Valid only if RS-232 option is installed

(3) Valid only if Hard Disk option is installed

(4) Valid only if sound option is installed

(5) Valid only if High Resolution Graphics option is installed

Following is a Bit Map of the appropriate ports in the Model 4. Note that this is an "internal" bit map only. For bit maps of the optional devices, refer to the appropriate section of the desired manual.

Model 4 Port Bit Map

Port	D7	D6	D5	D4	D3	D2	D1	D0
FC · FF	Cass							Cassette
(READ)	data 500 bd		(MIF	RORofPe	ORT EC)			data 1500 bd
FC-FF		(1)	lote, also resets	cassette data la	atch)		cass.	cassette
(WRITE)	×	×	×	×	×	×	out	data out
F8 - FB (READ)	Prntr BUSY	Prntr Paper	Prntr Select	Prntr Fault	x x	x x	x x	x x
+8 - FB (WRITE)	Prntr D7	Prnu D6	Prnu D5	Printi D4	Printi D3	Printi D2	Prnu D1	Prntr D0
EC-EF			(Any Read	causes reset of l	Real Time Cloc	k Interrupt)		
EC - EF (WRITE)	x x	CPU Fast	x x	Enable EX I/O	Enable Altset	Mode Select	Cass Mot On	x x
E0 · E3 (READ)	x x	Receive Error	Receive Data	Xmit Empty	10 Bus Int	RTC Int	C Fall Int	C Rise Int
E0 - E3 (WRITE)	x x	Enable Rec Err	Enable Rec Data	Enable Xmit Emp	Enable 10 Int	Enable RT Int	Enable CF Int	Enable CR Int
90 - 93 (WRITE)	x x	x x	x x	x x	x x	x x	x x	Sound Bit
84 - 87 (WRITE)	Page	Fix Upr Memory	Memory Bit 1	Memory Bit 0	Invert Video	80/64	Select Bit 1	Select Bit 0

Memory mapping is accomplished by PAL U59 in the Basic 16K or 64K computer. In a 128K system, PAL U72, along with the select and memory bits of the options register, also enter into the memory mapping function.

Four memory maps are listed below. Memory Map I is compatible with the Model III. Note that there are two 32K banks in the 64K system, which can be interchanged with either position of the upper two banks of a 128K system. The 128K system has four moveable 32K banks. Also note, in the Model III mode, that decoding for the printer status read (37E8 and 37E9 hexadecimal) is accomplished by U93 and leftover gates from U40, U46, U51, U54, U60, and U62.

Memory Map I - Model III Mode

	0000 - 1FFF	ROM A (8K)
	2000 - 2FFF	ROM B (4K)
	3000 - 37FF	ROM C (2K) — Less 37E8 - 37E9
	37E8 - 37E9	Printer Status Port
	3800 - 3BFF	Keyboard
	3C00 - 3FFF	Video RAM (Page bit selects 1K of 2K)
	4000 - 7FFF	RAM (16K system)
,	4000 - FEFF	RAM (64K system)

Memory Map II

0000 - 37FF	RAM (14K)	
3800 - 3BFF	Keyboard	
3C00 - 3FFF	Video RAM	
4000 – 7FFF	RAM (16K)	End of one 32K Bank
8000 - FFFF	RAM (32K)	Second 32K Bank
	Memory Map III	
0000 7FFFF	RAM (32K)	End of One 32K Bank
8000 F3FF	RAM (29K)	Second 32K Bank
F400 F7FF	Keyboard	Occoria dell' Baril
F800 - FFFF	Video RAM	
	Memory Map IV	
0000 - 7FFF	RAM (32K)	One 32K Bank
8000 - FFFF	RAM (32K)	Second 32K Bank

(See Figure 1-2 for 128K Maps)

1.1.5 ROM

The Model 4 Microcomputer contains 14K of Read Only Memory (ROM), which is divided into an 8K ROM (U68), a 4K ROM (U69), and a 2K ROM (U70). ROMs used have three-state outputs which are disabled if the ROMs are deselected. As a result, ROM data outputs are connected directly to the CPU data bus and do not use data buffer U71, which is disabled during a ROM access.

ROMs are Model III compatible and contain a BASIC operating system, as well as a floppy disk boot routine. The enable inputs to the ROMs are provided by the address decoding section, and are present only in the Model III mode of operation.

1.1.6 RAM

Three configurations of Random Access Memory are available on the Model 4: 16K, 64K, and 128K. The 16K option uses 4116 type, 16K by 1 dynamic RAMs, which require three supply voltages (+12 volts, +5 volts, and -5 volts). The 64K and 128K options use 6665 type, 64K by 1 dynamic RAMs, which require only a single supply voltage (+5 volts). The proper voltage for each option is provided by jumpers.

Dynamic RAMs require multiplexed incoming address lines. This is accomplished by ICs U63 and U76. Output data from RAMs is buffered by U64. With the 128K option, there are two rows of the 64K by 1 RAM ICs. The proper row is selected by the CAS* signal from PAL U72.

1.1.7 Keyboard

The Model 4 Keyboard is a 70-key sculptured keyboard, scanned by the microprocessor. Each key is identified by its column and row position. Columns are defined by address lines A0 - A7, which are buffered by open-collector drivers U29 and U30. Data lines D0 - D7 define the rows and are buffered by CMOS buffers U44 and U45. Row inputs to the buffers are pulled up by resistor pack RP 1, unless a key in the current column being scanned is depressed. Then, the row for that key goes low.

1.1.8 Video

The heart of the video display circuitry in the Model 4 is the 68045 Cathode Ray Tube Controller. The CRTC allows two screen formats: 64 by 16 and 80 by 24. Since the 80 by 24 screen requires 1,920 screen memory locations, a 2K by 8 static RAM is used for the Video RAM. The 64 by 16 mode has a two-page screen display and a bit in the options register for determining which page is active for the CPU. Offset the start address of the CRTC to gain access to the second page in the 64 by 16 mode.

Addresses to the video RAM are provided by the 68045 when refreshing the screen and by the CPU when updating the data. These two sets of addresses are multiplexed by U33, U34, and U35. Data between the CPU and Video RAM is latched by U6 for a write, and buffered by U7 for a read operation.

FIGURE 1-2. RAM MEMORY

During screen refresh, the data outputs of the Video RAM (ASCII character codes) are latched by U8 and become the addresses for the character generator ROM (U23). In cases of low resolution graphics, a dual 1 of 4 data selector (U9) is the cell generator, with additional buffering from U10

The shift register U11 inputs are the latched data outputs of the character or cell generator. The shift clock input comes from the PAL U4, and is 10.1376 MHz for the 64 by 16 mode and 12.672 MHz for 80 by 24 operation. The serial output from the shift register later becomes actual video dot information.

Special timing in the video circuit is handled by hex latch U2. This includes blanking (originating from CRTC) and shift register loading (originating from U4). Additional video control and timing functions, such as sync buffering, inversion selection, dot clock chopping, and graphics disable of normal video, are handled by miscellaneous gates in U12, U13, U14, U22, U24, and U26.

1.1.9 Real Time Clock

The Real Time Clock circuit in the Model 4 provides a 30 Hz (in the 2 MHz CPU Mode) or 60 Hz (in the 4 MHz CPU Mode) or 60 Hz (in the 4 MHz CPU Mode) interrupt to the CPU. By counting the number of interrupts that have occured, the CPU can keep track of the time. The 60 Hz vertical sync signal from the video circuitry is divided by two (2 MHz Mode) by U53, and the 30 Hz at pin 1 of U51 is used to generate the interrupts. In the 4 MHz mode, signal FAST places a logic low at pin 1 of U51, causing signal VSYNC to trigger the interrupts at the 60 Hz rate. Note that any time interrupts are disabled, the accuracy of the clock suffers.

1.1.10 Cassette Circuitry

The cassette write circuitry latches the two LSBs (D0 and D1) for any output to port FF (hex). The outputs of these latches (U27) are then resistor summed to provide three discrete voltage levels (500 Baud only). The firmware toggles the bits to provide an output signal of the desired frequency at the summing node.

There are two types of cassette Read circuits — 500 baud and 1500 baud. The 500 baud circuit is compatible with both Model 1 and III. The input signal is amplified and filtered by Op amps (U43 and U28. Part of U15 then forms a Zero Crossing Detector, the output of which sets the latch U40. A read of Port FF enables buffer U41, which allows the CPU to determine whether the latch has been set, and simultaneously resets the latch. The firmware determines by the timing between settings of the latch whether a logic "one" or "zero" was read in from the tape.

The 1500 baud cassette read circuit is compatible with the Model III cassette system. The incoming signal is compared to a threshold by part of U15. U15's output will then be either high or low and clock about one-half of U39, depending on whether it is a rising edge or a falling edge. If interrupts are enabled, the setting of either latch will generate an interrupt. As in the 500 baud circuit, the firmware decodes the interrupts into the appropriate data.

For any cassette read or write operation, the cassette relay must be closed in order to start the motor of the cassette deck. A write to port EC hex with bit one set will set latch U42, which turns on transistor Q4 and energizes the relay K1. A subsequent write to this port with bit one clear will clear the latch and de-energize the relay.

1.1.11 Printer Circuitry

The printer status lines are read by the CPU by enabling buffer U67. This buffer will be enabled for any input from port F8 or F9, or any memory read from location 37E8 or 37E9 when in the Model III mode. For a listing of bit status, refer to the bit map.

After the printer driver software determines that the printer is ready to receive another character (by reading the status), the character to be printed is output to port F8. This latches the character into U66, and simultaneouly fires the one-shot U65 to provide the appropriate strobe to the printer.

1.1.12 I/O Connectors

Two 20-pin single inline connectors, J7 and J8, are provided for the connection of a Floppy Disk Controller and an RS-232 Communications Interface, respectively. All eight data lines and the two least significant address lines are routed to these connectors. In addition, connections are provided for device or board selection, interrupt enable, interrupt status read, interrupt acknowledge, RESET, and the CPU WAIT signal.

The graphics connector, J10, contains all of the above interface signals, plus CRTCLK, the dotclock signal, a graphics enable input, and other timing clocks which synchronize the graphics board with the CRTC.

The I/O bus connector, J2, contains connections for all eight data lines (buffered by U74), the low order address lines (buffered by U73), and the control lines (buffered by U75) IN*, OUT*, RESET*, M1*, and IORQ*. In addition, the I/O bus connector has inputs to allow the device(s), connected to generate CPU WAIT states and interrupts.

The sound connector, J11, contains only four connections: sound enable (any output to port 90 hex), data bit D0, Vcc, and ground.

1.1.13 Sound Option

The Model 4 sound option, available as standard equipment on the disk drive versions, is a software intensive device. Data

is sent out to port 90H, alternately setting and clearing data bit D0. The state of this bit is latched by sound board U1 and amplified by sound board Q1, which drives a piezoelectric sound transducer. The speed of the software loop determines the frequency, and thus, the pitch of the resulting tone

COMPONENT LOCATION/CIRCUIT TRACE, SOUND BOARD #8858121

SCHEMATIC 8000188, SOUND BOARD #8858121

FIGURE 1-4. TIMING OF U4

1.2 MODEL 4 I/O BUS

The Model 4 Bus is designed to allow easy and convenient interfacing of I/O devices to the Model 4. The I/O Bus supports all the signals necessary to implement a device compatible with the 2-80s I/O structure. That is:

Addresses:

AØ to A7 allow selection of up to 256^{\dagger} input and 256 output devices if external I/O is enabled.

†Ports 80H to 0FFH are reserved for System use.

Data

DBØ to DB7 allow transfer of 8-bit data onto the processor data bus if external I/O is enabled.

Control Lines

- IN* Z-80 signal specifying that an input is in progress. Gated with IORQ.
- b. OUT* Z-80 signal specifying that an output is in progress. Gated with IORQ.
- c. RESET* system reset signal
- d IOBUSINT* input to the CPU signaling an interrupt from an I/O Bus device if I/O Bus interrupts are enabled.
- IOBUSWAIT* input to the CPU wait line allowing I/O Bus device to force wait states on the Z-80 if external I/O is enabled.
- f. EXTIOSEL* input to CPU which switches the I/O Bus data bus transceiver and allows an INPUT instruction to read I/O Bus data.
- g. M1* and IORQ* standard Z-80 signals

The address line, data line, and control lines a to c and e to g are enabled only when the ENEXIO bit in EC is set to a one.

To enable I/O interrupts, the ENIOBUSINT bit in the CPU IOPORT EØ (output port) must be a one. However, even if it is disabled from generating interrupts, the status of the IOBUSINT* line can still read on the appropriate bit of CPU IOPORT EØ (input port)

See Model 4 Port Bit assignment for port ØFF, ØEC, and ØEØ on pages 14 and 15.

The Model 4 CPU board is fully protected from "foreign I/O devices" in that all the I/O Bus signals are buffered and can be disabled under software control. To attach and use an I/O device on the I/O Bus, certain requirements (both hardware and software) must be met.

For input port device use, you must enable external I/O devices by writing to port ØECH with bit 4 on in the user software. This will enable the data bus address lines and control signals to the I/O Bus edge connector. When the input device is selected, the hardware will acknowledge by asserting EXTIOSEL* low. This switches the data bus transceiver and allows the CPU to read the contents of the I/O Bus data lines. See Figure 1.6 for the timing EXTIOSEL* can be generated by NANDing IN and the I/O port address.

Output port device use is the same as the input port device in use, in that the external I/O devices must be enabled by writing to port ØECH with bit 4 on in the user software — in the same fashion

For either input or output devices, the IOBUSWAIT* control line can be used in the normal way for synchronizing slow devices to the CPU. Note that since dynamic memories are used in the Model 4, the wait line should be used with caution. Holding the CPU in a wait state for 2 msec or more may cause loss of memory contents since refresh is inhibited during this time. It is recommended that the IOBUSWAIT* line be held active no more than 500 µsec with a 25% duty cycle

The Model 4 will support Z-80 mode 1 interrupts. A RAM jump table is supported by the LEVEL II BASIC ROMs and the user must supply the address of his interrupt service routine by writing this address to locations 403E and 403F. When an interrupt occurs, the program will be vectored to the user supplied address if I/O Bus interrupts have been enabled. To enable I/O Bus interrupts, the user must set bit 3 of Port 0E0H.

Input or Output Cycles

"Inserted by Z80 CPU

Input or Output Cycles with Wait States.

"Inserted by Z80 CPU

†Coincident with IORO* only on INPUT cycle

FIGURE 1-6. I/O BUS TIMING DIAGRAM

1.3 MODEL 4 PORT BITS

Name: WRNMIMASKREG

Port Address: ØE4H

Access: WRITE ONLY

Bit 7 = ENINTRQ; Ø disables Disk INTRQ from generating

an NMI

1 enables above

Bit 6 = ENDRQ; Ø disables Disk DRQ from generating an

NMI

1 enables above

Name: RDNMISTATUS*

Port Address: ØE4H Access: READ

READ ONLY

Bit 7 = Status of Disk INTRQ; $1 = False_0 = True$

Bit 6 = Status of Disk DRQ; 1 = False Ø = True

Bit 5 = Reset * Status: 1 = False, Ø = True

Name: MOD OUT Port Address: ØECH

Access: WRITE ONLY

Bit 7 = Undefined

Bit 6 = Undefined

Bit 5 = DISWAIT; Ø disables video waits, 1 enables

Bit 4 = ENEXTIO; Ø disables external IO Bus, 1 enables

Bit 3 = ENALTSET; Ø disables alternate character set.

1 enables alternate video character set

Bit 2 = MODSEL; Ø enables 64 character mode,

1 enables 32 character mode

Bit 1 = CASMOTORON; Ø turns cassette motor off.

1 turns cassette motor on

Bit Ø = Undefined

Name: RDINTSTATUS*

Port Address: ØEØH

Access: READ ONLY

NOTE: A Ø indicates the device is interrupting

Bit 7 = Undefined

Bit 6 = RS-232 ERROR INT

Bit 5 = RS-232 RCV INT

Bit 4 = RS-232 XMIT INT

Bit 3 = IOBUS INT

Bit 2 = RTC INT

Bit 1 = CASSETTE (1500 Baud) INT F

Bit Ø = CASSETTE (1500 Baud) INT R

Name: CASOUT*

Port Address: ØFFH

Access: WRITE ONLY

Bit 7 = Undefined

Bit 6 = Undefined

Bit 5 = Undefined

Bit 4 = Undefined

Bit 3 = Undfined

Bit 2 = Undefined

Bit 1 = Cassette output level

Bit Ø = Cassette output level

Name: WRINTMASKREG*

Port Address: ØEØH Access: WRITE ONLY

Bit 7 = Undefined

Bit 6 = ENERRORINT; 1 enables RS-232 interrupts on parity error, framing error, or data overrun error

Ø disable above

Bit 5 = ENRCVINT; 1 enables RS-232 receive data register

full interrupts.

Ø disables above

Bit 4 ≈ ENXMITINT; 1 enables RS-232 transmitter holding register empty interrupts.

Ø disables above

Bit 3 = ENIOBUSINT; 1 enables I/O Bus interrupts,

Ø disables the above

Bit 2 = ENRTC; 1 enables real time clock interrupt,

Ø disables above.

Bit 1 = ENCASINTF: 1 enables 1500 Baud falling edge inter-

rupt.

Ø disables above

Bit \emptyset = ENCASINTR; 1 enables 1500 Baud rising edge inter-

rupt,

Ø disables above

Name: CAS IN*
Port Address: ØFFH
Access: READ ONLY

Bit 7 = 500 Baud Cassette bit

Bit 6 = Undefined

Bit 5 = DISWAIT (See Port ØECH definition)

Bit 4 = ENEXTIO (See Port ØECH definition)

Bit 3 = ENALTSET (See Port ØECH definition)

Bit 2 = MODSEL (See Port ØECH definition)

Bit 1 = CASMOTORON (See Port ØECH definition)

Bit Ø = 1500 Baud Cassette bit

NOTE: Reading Port ØFFH clears the 1500 Baud Cassette interrupts

Name: DRVSEL* Port Address: 0F4H

Access: WRITE ONLY

Bit 7 = FM*/MFM; Ø selects single density, 1 selects double density

Bit 6 = WSGEN: Ø = no wait states generated, 1 = wait states generated

Bit 5 = PRECOMP; Ø = no write precompensation. 1 = write precompensation enabled.

Bit 4 = SDSEL; Ø selects side Ø of diskette.

1 selects side 1 of diskette

Bit 3 = Drive select 4

Bit 2 = Drive select 3

Bit 1 = Drive select 2

Bit Ø = Drive select 1

SECTION II 4 GATE ARRAY THEORY OF OPERATION

2.1 MODEL 4 GATE ARRAY THEORY OF OPERATION

2.1.1 Introduction

The following discusses each element of the main board of the Model 4 Gate Array block diagram (see Figure 2-1). In each case the intent is understanding the operation on a practical level sufficient to aid in isolating a problem to the failing component.

2.1.2 Reset Circuit

Figure 2-2 shows the Reset circuit for generation of reset on power up and when the reset switch is pushed on the key-board. The time constant determined by R8 and C25, is used to allow the system to stabilize before triggering a one shot (U63) with an approximate pulse width of 70 microsecs. When the reset switch is pushed, the input pin is brought to ground and fires the one shot when the switch is released.

A second point to be noted is the signal POWRS* which is used to reset the drive select latch in the FDC circuit

2.1.3 CPU

The central processing unit of the Model 4 microcomputer is a Z80A microprocessor, and will run in either 2 or 4 MHz mode. All of the output lines of the Z80A are buffered. The address lines are buffered by two 74LS2445 (UZ and U3 with the enable tied to ground), the control lines by a 74F04 (UZ7), and the data lines by a 74LS245 (U28 with the enable tied to BUSEN* and the direction control tied to BUSEIN*).

2.1.4 System Timing and Control Registers

Control Registers

The first of these registers is the WRINTMASKREG (U34) This is only part of the register as this function is shared with the Gate Array 4.5. The main register contains RTC ENCASINTFALL AND ENCASINTRISE. The Gate Array has the interrupts for the RS232C Interface and the I/O bus interrupts and a duplicate of the RTC

The second is the OPREG (U33) which contains the added options of the Model 4 for video and Memory mapping

The last of the registers is MODOUT (U53) and is also readable through the CASSIN (U52) buffer. It contains the Cassette motion controls, and the FAST control for Model 4

CPU Clock and RS232 Clock

Most of the timing generation for the board is shown in Figure 2-5. The Gate Array 4.1.1 is the basis for this timing as it produces the 20.2752 MHz clock and then divides this down to produce most of the other clocking functions used on the board

The first clock that is produced is PCLK (pin 23) which drives the CPU. It is a divide by ten of the 20.2752 MHz in the 2 MHz mode and a divide by 5 in the 4 MHz mode. The transition from one mode to the other is without glitches and both modes are 50 percent duty cycles

Note that the signal that controls this mode also controls the Real Time Clock circuit described later.

As a simple divide by four of the fundamental 20 2752 MHz, the RS232CLK on pin 22 of U9 provides the basic clock to the RS232C circuit

Video and Graphics Clocking and Timing

The timing for both of these functions may be viewed as one since they must operate synchronously and the same timing must be generated for both. The additional signals sent to the Graphics Board allow it to maintain synchronization by knowing the phase relation of the signals sent to both of them. To further understand the circuit of Figure 2-5 notice the PLL Module (U8). This chip develops a 12 672 MHz signal which is phase locked to the 1 2672 MHz input on pin 5 and is a divide by 16 of the primary 20 2752 MHz clock This provides the Gate Array 4.1 1 with two clocks to drive the video display and the graphics circuits, 10 1376 MHz for 64 character display, and a 12 672 MHz for the 80 character display.

The following discussion will consider both the 64 and 80 character displays to be the same, the difference being the primary frequency and not the phase relation or function of the signals generated.

The reference clock for the timing is DCLK (U9-15) and the other clocks that are produced for the video output are derived from this clock (DOT* at U9-17 is a phase shift of DCLK and is provided as an option for the the dot clock for variations in delay paths in the video section) U9 then generates SHIFT* (pin 21), XADR7* (pin 20), CRTCLK (pin 19), LOADS* (pin 18), and LOAD* (pin 16) for the proper timing for the four video modes in addition for the Graphics Board to synchronize with this timing H (pin 14), I (pin 13), and J (pin 11) are fed to connector J12 See Figures 2-6 and 2-7 for the timing diagrams for video clocks generated by Gate Array 4.1.1

Figure 2-2. Reset Circuit (Page 4 of Schematic)

Figure 2-4. Control Registers (Page 2 of Schematic)

Figure 2-5. CPU, RS232C, and Video Timing Generation (Page 3 of Schematic)

Figure 2-6. Video Timing 64 x 16 Mode 80 x 24 Mode

DRAM and Video RAM Timing

The Video RAM and DRAM timing share the timing delay line (U80) This is done by "OR"ing the two signals GRAS*, and AINPRG* at U39 to get the signal STDEL* This is possible because the signals VIDEO and MREQ or MCYCEN are gated in to mask off the signals that are not desired

Since the CRTC and the CPU are operating independently and at different clock rates, when the CPU wants to access the Video RAM the two must synchronize with each other This is accomplished when a video access is decoded WAIT* It is pulled low, when it is determined whether the access is a read or write and the correct cycle of the CRTC clock is present, the actual access can begin, hence AINPRG* is generated and WAIT* is released

From this point the actual sequence depends on whether a read or a write is done. On a read the address is enabled to the RAM, the delay through U80 to VLATCH* when data is latched in the 74LS373 where the CPU can pick-up the data at the completion of this cycle. On a write the sequence is more complex. The address is enabled to the RAM, the output is disabled (VRAMDIS* at U7-12), write is delayed with respect to the address (DLYWR* at U80-6) and the buffer on the data lines is enabled (VBUFEN* at U60-8), then after a delay the write is cutoff to end the cycle for the RAM (ENDVW* at U80-10). For the timing diagram of the Video RAM CPU access see Figure 2-8.

DRAM Timing

The DRAM timing is shown in Figure 2-9 At the begining of the CPU cycle the address lines settle-out first and are. therefore, decoded to allow maximum access speed (see Address Decode). With the generation of MREQ, U39-11 generates PMREQ and enables U42 and gates this with the type of cycle to develop GRAS* (U30-6), RASO* (U30-3), and RAS1* (U30-11). GRAS* is then "OR"ed with AINPRG as mentioned above. The timing from this point is very straight forward. With RASO* and RAS1* generated next MUX (U80-12) is built to switch the addresses to memory then GCAS is generated and clocks flip-flop U31 with MCYEN on the J term. This is done to make sure this is a true memory cycle. Then if this is an M1 cycle VLATCH* clocks at U31 and cuts off PMREQ* at U39 to end the cycle. For timing diagrams of the memory interface see Figures 2-10 to 2-12

2.1.5. Address Decode

This section is divided into two parts, the memory addressing and the I/O addressing. This separation is a reflection of the separate mapping of memory and I/O of the Z8OA itself. For reference of both sections, see Figure 2-13.

Memory Address

The memory map for the Model 4 is shown in Table 2-1 and is best described as an option overlay in the sense that at each step of additional memory, the new options overlap the previous and the new options are added on Moreover, the added options have no effect on previous levels and are invisible at those levels

	Address in hex			Function
MAP I*	MAP II	MAP III	MAP IV	of block
2000 0757	0000-37FF	0000-F3FF	0000-FFFF	RAM (64K) ROM
0000-37E7 37E8-37E9 37EA-37FF				Printer Status ROM
3800-3BFF 3C00-3FFF**	3800-3BFF 3C00-3FFF**	F400-F7FF F800-FFFF		Keyboard Video RAM
4000-7FFF 4000-FFFF	4000-FFFF			RAM (16K) RAM (64K)

Table 2-1

The decoding of the addresses for the memory map described above is done for the most part by U5. The only decode not done by U5 is the line printer memory status port at 37E8 and 37E9 hex. These needed additional address lines hence the decode LPADD as an input to U5.

^{*} Only map available on 16K machine

^{**} Page bit is used to select 1K of 2K Video RAM

Figure 2-8. Video RAM CPU Access Timing

Figure 2-9. Video RAM and DRAM Timing Circuit.

(Page 2 of Schematic)

Hardware 32

Figure 2-12. Memory Write Cycle Timing

Hardware 33

Figure 2-13. Address Decode (Page 2 of Schematic)

Table 2-2. RAM Memory

I/O port Address

The Port Map decoding is accomplished by three 74LS138s (U43,U44, and U59). These ICs decode the low order adress lines (A0 – A7) from the CPU and decode the port being selected. The IN* signal and OUT* signal are used in the decode for U59 and U43, but U44 is a pure address decode and, therefore, needs to be gated with IN*, OUT*, or IOREO* later. For a complete I/O map see Table 2-3.

2.1.6. ROM

The A ROM is enabled by the decode as appropriate by the address logic described above, and is addressed in a simple straight forward fashion. The enable for the B/C ROM is also similarly accomplished, however, the address has a jumper option available This option is designed to allow for testing of the board logic in the factory When jumper is moved from JP8 to JP7, the ROM is in the test mode, with the options appearing on the screen.

2.1.7 DRAW

The DRAM timing was described earlier in the timing section, the actual DRAM is contained in two banks of eight each U65 to U74 and U85 to U92. They are arranged in order of data bits D0 through D7, U65 and U85 being D0, through U74 and U92 being D7. Note in Figure 2-15 that the two banks are different with jumper options in the lower bank, these options are for the possible use of 16k three voltage parts When jumpered as shown in Figure 2-14 the bank is identical to the second bank and is for using 64k DRAMs With both banks filled there is 128k available to the

2.1.8 Video Circuit

Video Modes

The Model 4 has many video options available through hardware and software. Software has control of inverse video on a character by character basis by turning on IN-VIDE. Note that this implies the available number of characters is now 128 since the most significant bit of the character code in memory is now used to indicate inverse character. Similarly, an alternate character set can be enabled by turning on ENALTSET. This enables a new 64 characters in place of the last 64 characters, that is, the Kana set in place of the game set. An option not available to software is an enhanced character, which moves characters down one row in their character block to make an inverse character appear within the inverse block and not on the edge of the block. This is done by moving jumper JP11 to JP12. As an example of a combination of hardware and software options available in the video is the overlay, which not only requires the Graphics Board to be installed, but also software to enable the graphics data and the video data with text at the same time

The Model 4 also has an option for either 64 character or 80 character wide screen. The 64 character screen is compatible with the Model III and displays 16 lines. The 80 character screen displays 24 lines. In addition each of these has a double width mode. These options are controlled by two bits, MODSEL and 8064 which provide the screens as shown in the following table.

8064	MODSEL	Video Screen Size
0	0	64 x 16
Ō	1	32 x 16
1	Ó	80 x 24
1	ī	40 x 24

Table 2-4

With this information of the options available to the user we can now view the actual operation of the circuit with the final objectives in mind and see how they are achieved. For the rest of this section all references will be made to Figure 2-16. The first task to be accomplished would be the screen refresh and this is done by the CRTC or 68045 (U11) which will generate the addresses continuously on its address lines. Then to allow the CPU access to the same memory the address lines are multiplexed at U12, U14, and U15 on opposite phases of the CRT clock. The CPUs access timing is then handed by the timing circuit described earlier.

The data bus of the RAM (U16) is a two way bus with the RAM as a source or destination on all accesses, the video gate array (U17) is the destination on the screen refresh half of the cycle, the 74LS373 (U36) is the destination on a read of the RAM by the CPU, and the 74LS244 (U35) is the source on writes to the RAM.

The video gate array then gates the RAM data INVIDE, and ENALTSET to determine the ROM addressing for these two options and CHRADD to the 74LS283 (U13) which takes the row address from the 68045 and adds a zero to the row address or a minus one to form the character enhanced mode.

The data out of the ROM is then sent back to the gate array where it is then changed to a serial stream of data which is synchronized with the data that would come from the graphics board, GRAFVID. The signal CL166 will inhibit the data out of the serial register and the signal ENGRAF enables the graphics data, hence, if both are enabled the effect is an overlay. The output data is sent to U20 pin 9 where it is gated with one of two phases of the dot clock; then after being filtered to lower the R.F.I. it is output to the sweep board.

Model 4 Port Bit Map

Port	D7	D6	D5	D4	D3	D2	D1	D0
FC · FF	Cass							Cassette
(READ)	data 500 bd		(MIF	RROR of P	ORT EC)			data 1500 bd
FC-FF		(1)	lote, also resets	cassette data l	atch)		cass.	cassette
(WRITE)	×	×	×	x	×	×	out	data out
F8 - FB (READ)	Prntr BUSY	Prntr Paper	Prntr Select	Prntr Fault	x x	x x	x x	x x
F8 - FB (WRITE)	Prntr D7	Prntr D6	Prntr D5	Prntr D4	Prntr D3	Prntr D2	Prntr D1	Prntr D0
EC-EF			(Any Read	causes reset of	Real Time Cloc	k Interrupt)		
EC - EF (WRITE)	x x	CPU Fast	x x	Enable EX I/O	Enable Altset	Mode Select	Cass Mot On	x x
E0 - E3 (READ)	x x	Receive Error	Receive Data	Xmit Empty	10 Bus Int	RTC Int	C Fall Int	C Rise Int
E0 · E3 (WRITE)	x x	Enable Rec Err	Enable Rec Data	Enable Xmit Emp	Enable 10 Int	Enable RT Int	Enable CF Int	Enable CR Int
90 - 93 (WRITE)	x x	x x	x x	x x	x x	x x	x x	Sound Bit
84 - 87 (WRITE)	Page	Fix Upr Memory	Memory Bit 1	Memory Bit 0	Invert Video	80/64	Select Bit 1	Select Bit 0

Table 2-3. I/O Port Map

Figure 2-14. ROM Circuit (Page 1 of Schematic)

Figure 2-15. DRAM Circuit (Page 3 of Schematic)

Figure 2-16. Video Circuit (Page 3 of Schematic)

2.1.9 Keyboard

The interface to the keyboard is a matrix composed of address lines in one direction and data lines in the other. The address lines have two open collector buffers (U26 and U40) on the output to the keyboard.

The input is pulled-up with an 820 ohm resistor and is then fed into two CMOS Inputs (U55 and U56) which act as a driver on data lines.

2.1.10 Real Time Clock

The Real Time Clock circuit in the Model 4 provides a 30 Hz (in the 2 MHz CPU Mode) or 60 Hz (in the 4 MHz CPU Mode) interrupt to the CPU By counting the number of interrupts that have occured, the CPU can keep track of the time. The 60 Hz vertical sync signal from the video circuitry is divided by two (2 MHz Mode) by U10 and the 30 Hz at pin 9 of U46 is used to generate the interrupts. In the 4 MHz mode, the signal FAST places a logic low at pin 4 of U10, causing the signal VSYNC to pass through U46 at its normal rate and trigger interrupts at the 60 Hz rate. Note that any time interrupts are disabled, the accuracy of the clock suffers.

2.1.11 Line Printer Port

The printer status lines are read by the CPU by enabling buffer U108. This buffer will be enabled for any input from port F8 or F9, or any memory read from location 37E8 or 37E9 when in the Model III mode. For a listing of bit status, refer to the bit map

After the printer driver software determines that the printer is ready to receive a character (by reading the status), the character to be printed is output to port F8 This latches the character into U107, and simultaneously fires the one-shot U63 to provide the appropriate strobe to the printer.

2.1.12 Graphics Port

The graphics port on the Model 4 is provided to attach the optional high resolution graphics board and provides the necessary signals to interface not only to the CPU (such as data lines, address lines, address decodes, and control lines), but also the signals needed to synchronize the output of the Video Circuit and the Graphics board and control to provide features such as overlay.

Pin Number	Signature	
1	D0	
2	D1	
3	D2	
4	D3	
5	D4	
6	D5	
7	D6	
8	D7	
9	GEN*	
10	DCLK	
11	A0	
12	A1	
13	A2	
14	J	
15	GRAPVID	
16	ENGRAF	
17	DISBEN	
18	VSYNC	
19	HSYNC	
20	RESET*	
21	WAIT*	
22	Н	
23	I	
24	IN*	
25	GND	
26	+5	
27	N/C	
28	CL166	
29	GND	
30	+5	
31	GND	
32	+5	
33	GND	
34	+5	

Table 2-5

Figure 2-17. Keyboard (Page 4 of Schematic)

Figure 2-18. RTC (Page 4 of Schematic)

Figure 2-19. Printer Circuit

(Page 4 of Schematic)

Figure 2-20. Sound

(Page 4 of Schematic)

2.1.13 Sound Port

The sound circuit is compatible with the optional sound board on the older version of the Model 4, and works in a similar fashion. Sound is generated by setting and clearing data bit zero on successive OUTs to port 90H. The state of D0 is latched in U18 which is amplified by Q2 to drive the speaker (SP1).

2.1.14 I/O Bus Port

The Model 4 Gate Array Bus is designed to allow easy and convenient interfacing of I/O devices to the Model 4. The I/O Bus supports all the signals necessary to implement a device compatible with the Z-80s I/O structure. That is:

Addresses:

A0 to A7 allow selection of up to 256 input and 256 output devices if external I/O is enabled

Ports 80H to 0FFH are reserved for System use

Data:

DB0 to DB7 allow transfer of 8-bit data onto the processor data bus if external I/O is enabled

Control Lines:

- a IN* Z-80 signal specifying that an input is in progress. Gated with IORQ.
- b. OUT* Z-80 signal specifying that an output is in progress. Gated with IORQ
- c RESET* -- system reset signal.
- d. IOBUSINT* input to the CPU signaling an interrupt from an I/O Bus device if I/O Bus interrupts are enabled.
- e IOBUSWAIT* input to the CPU wait line allowing I/O Bus device to force wait states on the Z-80 if external I/O is enabled
- f EXTIOSEL* input to CPU which switches the I/O Bus data bus transceiver and allows an INPUT instruction to read I/O Bus data
- g. M1* and IORQ* standard Z-80 signals.

The address line, data line, and control lines a to c and e to g are enabled only when the ENEXIO bit is set to a one.

To enable I/O interrupts, the ENIOBUSINT bit in the CPU IO-PORT E0 (output port) must be a one. However, even if it is disabled from generating interrupts, the status of the IOBU-SINT* line can still read on the appropriate bit of CPU IO-PORT E0 (input port)

See Model 4 Port Bit assignment for 0FF, 0EC, and 0E0.

The Model 4 CPU board is fully protected from foreign I/O devices in that all the I/O bus signals are buffered and can be disabled under software control. To attach and use an I/O device on the I/O Bus, certain requirements (both hardware and software) must be met

For input port device use, you must enable external I/O devices by writing to port OECH with bit 4 on in the user software This will enable the data bus, address lines, and control signals to the I/O Bus edge connector. When the input device is selected, the hardware will acknowledge by asserting EXTIOSEL* low This switches the data bus transceiver and allows the CPU to read the contents of the I/O Bus data lines See Figure 2-21 for the timing EXTIOSEL* can be generated by MANDing IN and the I/O port address

Output port device use is the same as the input port device in use, in that the external I/O devices must be enabled by writing to port OECH with bit 4 on in the user software — in the same fashion

For either input or output devices, the IOBUSWAIT* control line can be used in the normal way for synchronizing slow devices to the CPU Note that since dynamic memories are used in the Model 4, the wait line should be used with caution Holding the CPU in a wait state for 2 msec or more may cause loss of memory contents since refresh is inhibited during this time. It is recommended that the IOBUSWAIT* line be held active no more than 500 msec with a 25% duty cycle

The Model 4 will support Z-80 mode 1 interrupts A RAM jump table is supported by the LEVEL II BASIC ROMs and the user must supply the address of his interrupt service routine by writing this address to locations 403E and 403F. When an interrupt occurs, the program will be vectored to the user supplied address if I/O Bus interrupts have been enabled. To enable I/O Bus interrupts, the user must set bit 3 of Port 0EOH.

The actual implementation is shown in Figure 2-22 The data is buffered in both directions using a 74LS245 (U101). The addresses are buffered with a 74LS244 (U102), and the control lines out are buffered by a 74LS367. Note that RE-SET* is always enabled out, this is to power-up reset any device or clear any device before enabling the bus structure. This prevents any user from tying-up the bus when enabling the port in an unknown state.

"Inserted by Z80 CPU

Input or Output Cycles with Wait States.

"Inserted by Z80 CPU

†Coincident with IORQ® only on INPUT cycle

Figure 2-21. I/O BUS TIMING DIAGRAM

Figure 2-22. I/O Port (Page 4 of Schematic)

Data Bit	Function
D0	Selects Drive 0 when set*
D1	Selects Drive 1 when set*
D2	Selects Drive 2 when set*
D3	Selects Drive 3 when set*
D4	Selects Side 0 when reset
	Selects Side 1 when set
D5	Write precompensation enabled when set dis- abled when reset
D6	Generates WAIT if set
D7	Selects MFM mode if set
	Selects FM mode if reset

^{*}Only one of these bits should be set per output

Hex D flip-flop U79 (74L174) latches the drive select bits, side select and FM* MFM bits on the rising edge of the control signal DRVSEL* Gate Array 4.4(U76) is used to latch the Wait Enable and Write precompensation enable bits on the rising edge of DRVSEL*. The rising edge of DRVSEL* also triggers a one-shot (Internal to U76) which produces a Motor On to the disk drives The duration of the Motor On signal is approximately three seconds The spindle motors are not designed for continuous operation. Therefore, the inactive state of the Motor On signal is used to clear the Drive Select Latch, which de-selects any drives which were previously selected. The Motor On one-shot is retriggerable by simply executing another OUT instruction to the Drive Select Latch.

Wait State Generation and WAITIMOUT Logic

As previously mentioned, a wait state to the CPU can be initiated by an OUT to the Drive Select Latch with D6 set Pin 10 of U76 will go high after this operation. This signal is inverted by 1/4 of U96 and is routed to the CPU where it forces the Z80A into a wait state. The Z80A will remain in the wait state as long as WAIT* is low. Once initiated, the WAIT* will remain low until one of five conditions is satisfied. If INTRQ, DRQ, or RESET inputs become active (logic high), it causes WAIT* to go high which allows the Z80 to exit the wait state. An internal timer on U70 serves as a watchdog timer to insure that a wait condition will not persist long enough to destroy dynamic RAM contents. This internal watchdog timer logic will limit the duration of a wait to 1024 μsec, even if the FDC chip should fail to generate a DRQ or an INTRQ.

If an OUT to Drive Select Latch is initiated with D6 reset (logic low), a WAIT is still generated. The internal timer on U70 will count to 2 which will clear the WAIT state. This allows the WAIT to occur only during the OUT instruction to prevent violating any Dynamic RAM parameters.

NOTE: This automatic WAIT will cause a 5 to 1 µsec wait each time an out to Drive Select Latch is performed.

Clock Generation Logic

A 16 MHz crystal oscillator and Gate Array 4.4 (U76) are used to generate the clock signals required by the FDC board. The 16 MHz oscillator is implemented internal to U76 and a quartz crystal (Y2). The output of the oscillator is divided by 2 to generate on 8 MHz clock. This is used by the FDC 1773 (U75) for all internal timing and data separation U76 further divides the 16 MHz clock to drive the watchdog timer circuit.

Disk Bus Output Drivers

High current open collector drivers U96, 94 and 93 are used to buffer the output signals from the FDC circuit to the disk drives

Write Precompensation and Write Data Pulse Shaping Logic

All write precompensation is generated internal to the FDC chip 1773 (U75). Write Precompensation occurs when WG goes high and write precompensation is enabled from the software. ENP is multiplexed with RDY and is controlled by WG at pin 20 of U75 Write data is output on pin 22 of U75 and is shaped by a one-shot (1/2 of U98) which stretches the data pulses to approximately 500 nsec

Clock and Read Data Recovery Logic

The Clock and Read Data Recovery Logic is done internal to the 1773 (U75).

Floppy Disk Controller Chip

The 1773 is an MOS LSI device which performs the functions of a floppy disk formatter/controller in a single chip implementation. The following port addresses are assigned to the internal registers of the 1773 FDC chip:

Port No.	Function
F0H	Command/Status Register
F1H	Track Register
F2H	Sector Register
F3H	Data Register

2.1.15 Cassette Circuit

The cassette write circuitry latches the two LSBs (D0 and D1) for any output to port FF (hex). The outputs of these latches (U51) are then resistor summed to provide three discrete voltage levels (500 Baud only). The firmware toggles the bits to provide an output signal of the desired frequency at the summing node.

There are two types of cassette Read circuits — 500 baud and 1500 baud. The 500 baud circuit is compatible with both Model I and III. The input signal is amplified and filtered by Op amps (U23 and U54). Part of U22 then forms a Zero Crossing Detector, the output of which sets the latch U37. A read of Port FF enables buffer U52 which allows the CPU to determine whether the latch has been set, and simultaneously resets the latch. The firmware determines by the timing between settings of the latch whether a logic "one" or "zero" was read in from the tape.

The 1500 baud cassette read circuit is compatible with the Model III cassette system. The incoming signal is compared to a threshold by part of U22 U22's output will then be either high or low and clock about one-half of U37, depending on whether it is a rising edge or a falling edge If interrupts are enabled, the setting of either latch will generate an interrupt. As in the 500 baud circuit, the firmware decodes the interrupts into the appropriate data

For any cassette read or write operation, the cassette relay must be closed in order to start the motor of the cassette deck. A write to port EC hex with bit one set will latch U53, which turns on transistor Q3 and energizes the relay K1. A subsequent write to this port with bit one clear will clear the latch and de-energize the relay.

2.1.16 FDC Circuit

The TRS-80 Model 4 Floppy Disk Interface provides a standard 5-1/4" floppy disk controller. The Floppy Disk Interface supports single and double density encoding schemes. Write precompensation can be software enabled or disabled beginning at any track, although the system software enables write precompensation for all tracks greater than twenty-one The amount of write precompensation is 125 nsec and is not adjustable. One to four drives may be controlled by the interface. All data transfers are accomplished by CPU data requests. In double density operation, data transfers are synchronized to the CPU by forcing a wait to the CPU and clearing the wait by a data request from the FDC chip. The end of the data transfer is indicated by generation of a nonmaskable interrupt from the interrupt request output of the FDC chip. A hardware watchdog timer insures that any error condition will not hang the wait line to the CPU for a period long enough to destroy RAM contents.

Control and Data Buffering

The Floppy Controller is an I/O port-mapped device which utilizes ports E4H, F0H, F1H, F2H, F3H, and F4H. The decoding logic is implemented in the Address Decoding (for more information see Port Map) U78 is a bi-directional, 8-bit transceiver used to buffer data to and from the FDC and RS-232 circuits The direction of data transfer is controlled by the combination of control signals DISKIN*, RDINTSTA-TUS*, RDNINSTATUS*, and RS232IN* If any signal is active (logic low), U78 is enabled to drive data onto the CPU data bus If all signals are inactive (logic high), U78 is enabled to receive data from the CPU board data bus. A second buffer U77 is used to buffer the FDC chip data to the FDC/RS232 Data Bus, (BD0-BD7). U77 is enabled by Chip Select and its direction controlled by DISKIN* Again, if DISKIN* is active (logic low), data is enabled to drive from the FDC chip to the Main Data Busses. If DISKIN* is inactive (logic high), data is enabled to be transferred to the FDC chip.

Non-maskable Interrupt Logic

Gate Array 4.4 (U75) is used to latch data bits D6 and D7 on the rising edge of the control signal WRNMIMASKREG* This enables the conditions which will generate a non-maskable interrupt to the CPU. The NMI interrupt conditions which are programmed by doing an OUT instruction to port E4H with the appropriate bits set. If data bit 7 is set, an FDC interrupt is enabled to generate an NMI interrupt. If data bit 7 is reset, interrupt requests from the FDC are disabled. If data bit 6 is set, a Motor Time Out is enabled to generate an NMI interrupt. If data bit 6 is reset, interrupts on Motor Time Out are disabled. An IN instruction from port E4H enables the CPU to determine the course of the non-maskable interrupt. Data bit 7 indicates the status of FDC interrupt request (INTRQ) (0 = true, 1 = false) Data bit 6 indicates the status of Motor Time Out (0 = true, 1 = false). Data bit 5 indicates the status of the Reset signal (0 = true, 1 = false). The control signal RDNMISTATUS* gates this status onto the CPU data bus when active (logic low).

Drive Select Latch and Motor ON Logic

Selecting a drive prior to disk I/O operation is accomplished by doing an OUT instruction to port F4H with the proper bit set. The following table describes the bit allocation of the Drive Select Latch:

Hardware 49

Figure 2-24. F.D.C. Circuit (Page 5 of Schematic)

RS-232C Technical Description

The RS-232C circuit for the Model 4 computer supports asynchronous serial transmissions and conforms to the EIA RS-232C standards at the input-output interface connector (J3). The heart of the circuit is the TR1865 Asynchronous Receiver/Transmitter U84. It performs the job of converting the parallel byte data from the CPU to a serial data stream including start, stop, and parity bits. For a more detailed description of how this LSI circuit performs these functions, refer to the TR1865 data sheets and application notes. The transmit and receive clock rates that the TR1865 needs are supplied by the Baud Rate Generator U104 This circuit takes the 5.0688 MHz supplied by the system timing circuit and the programmed information received from the CPU over the data bus and divides the basic clock rate to provide two clocks. The rates available from the BRG go from 50 Baud to 19200 Baud See the BRG table for the complete Interrupts are supported in the RS-232C Circuit by the Interrupt mask register and the Status register internal to Gate Array 4.5 (U82) The CPU looks here to see which kind of interrupt has occurred Interrupts can be generated on receiver data register full, transmitter register empty, and any one of the errors — parity, framing, or data overrun. This allows a minimum of CPU overhead in transferring data to or from the UART. The interrupt mask register is port EO (write) and the interrupt status register is port EO (read). Refer to the IO Port description for a full breakdown of all interrupts and their bit positions.

All Model I, III, and 4 software written for the RS-232C interface is compatible with the Model 4 Gate Array RS-232C circuit, provided the software does not use the sense switches to configure the interface The programmer can get around this problem by directly programming the BRG and UART for the desired configuration or by using the SETCOM command of the disk operating system to configure the interface The TRS-80 RS-232C Interface hardware manual has a good discussion of the RS-232C standard and specific programming examples (Catalog Number 26-1145)

BRG Programming Table

AULEL	Transmit/ Receive	16X	Suported
Nibble Loaded	Baud Rate	Clock	SETCOM
oН	50	0.8 kHz	Yes
1H	75	1.2 kHz	Yes
2H	110	1.76 kHz	Yes
3H	134.5	2 1523 kHz	Yes
4H	150	2.4 kHz	Yes
5H	300	4.8 kHz	Yes
6H	600	9.6 kHz	Yes
7H	1200	19.2 kHz	Yes
8H	1800	28.8 kHz	Yes
9H	2000	32.081 kHz	Yes
AH	2400	38.4 kHz	Yes
BH	3600	57.6 kHz	Yes
CH	4800	76.8 kHz	Yes
DH	7200	115.2 kHz	Yes
EH	9600	153.6 kHz	Yes
FH	19200	307.2 kHz	Yes

Pinout Listing

The RS-232C circuit is port mapped and the ports used are E8 to E8. Following is a description of each port on both input and output

The following list is a pinout description of the DB-25 connector (P1).

Pin No.

Signal

			1	PGND (Protective Ground)
Port	Input	Output	2	TD (Transmit Data)
E8	Modem status	Master Reset, enables	3	RD (Receive Data)
		UART control register	4	RTS (Request to Send)
		load	5	CTS (Clear To Send)
EA	UART status	UART control register	6	DSR (Data Set Ready)
		load and modem control	7	SGND (Signal Ground)
E9	Not Used	Baud rate register load	8	CD (Carrier Detect)
		enable bit	19	SRTS (Spare Request to Send)
EB	Receiver Holding	Transmitter Holding	20	DTR (Data Terminal Ready)
	register	register	22	BI (Ring Indicate)

Figure 2-25. RS232C Circuit (Page 5 of Schematic)

Model 4 Gate Array I/O Pin Assignments

	J1		J2	J3			J4		J5
Pin No.	Signal	Pin No.	Signal	Pin No.	Signal	Pin No.	Signal	Pin No.	Signal
1. 23. 4. 5. 6. 7. 8. 9. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 31. 32. 33. 34. 34. 34. 34. 34. 34. 34. 34. 34	GND	1.23.45.67.89.10.11.12.13.14.15.66.77.81.19.20.12.22.23.34.25.62.27.28.33.33.34.	GND GND GND GND GND DS0* GND DS0* GND DS1* GND DS1* GND DS1* GND TRKOI* GND TRKOI* GND WPRTI* GND WPRTI* GND SDSELI GND GND GND GND TRKOI* GND TROI GND TRKOI* GND TRKOI* GND TRKOI GND TR	1.23.45.67.8.91.0.11.22.11.13.14.5.66.7.8.92.12.22.23.24.25.66.7.8.93.33.34.	PGND TD RD RTS CTS DSR SGND CD SRTS DTR	4. 56. 7. 8 9. 101. 112. 134. 115. 16. 17. 18. 190. 122. 234. 245. 266. 278. 29. 331. 323. 334. 356. 378. 399. 441. 442. 444. 445. 447. 449.	XD2 GND XD3 GND XD5 GND XD6 GND XD7 XD7 XD7 XA0 GND XA1 GND XA2 GND XA2 GND XA2 GND XA3 GND XA4 GND XA2 GND XA3 GND XA4 GND XA5 GND XA7 GND GND XA7 GND X CND X CN CN CN CN CN CN CN CN CN CN CN CN CN	2.3.4.5.6.7.8.9.10.1.12.13.4.15.6.17.18.9.2.12.2.23.4.2.5.6.7.8.9.9.10.1.2.12.2.23.4.2.5.6.7.8.9.9.0.1.2.2.3.4.2.3.4.2.3.3.3.4.5.6.3.7.8.9.9.4.1.4.2.3.4.4.4.5.6.4.7.8.4.9.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	XDOO GND

Model 4 Gate Array I/O Pin Assignments

J6	J8	J9	J12
Pin No. Signal	Pin No. Signal	Pin No. Signal	Pin No. Signal
1. 2 GND 3. PD0 4. GND 5. PD1 6. GND 7. PD2 8. GND 9. PD3 10. GND 11. PD4 12. GND 13. PD5 14. GND 15. PD6 16. GND 17. PD7 18. GND 19. N/A 20. GND 21. BUSY 22. GND 23. OUT PAPER 24. GND 25. UNIT SEL 26. NC 27. GND 28. FAULT 29. 30. 31. NC 32. 32. NC 33. NC 33. NC 33. NC 33. PD5	1. 2. 3. 4. VSYNCO* 5. HSYNCO* 7. 8. 9. 9. 10. 11. 112. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24.	1. 2 GND 3. 4. CASSETTE-1N 6. CASSETTE-7 OUT 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 20. 21. 22. 23. 24.	1 D0 2 D1 3 D2 4 D3 5 D4 6 D5 7 D6 8 D7 9 GEN' 10 DCLK 11 A0 12 A1 13 A2 14 J 15 GRAPVID 16 ENGRAF 17 DISBEN 18 VSYNC 20 RESET' 21 WAIT' 22 H 23 I 24 IN' 25 GND 26 +5V 27 28 CL166 29 GND 30 +5V 31 GND 32 +5V 31 GND 34 +5V

SECTION III 4P THEORY OF OPERATION

3.1 MODEL 4P THEORY OF OPERATION

3.1.1 Introduction

Contained in the following paragraphs is a description of the component parts of the Model 4P CPU. It is divided into the logical operational functions of the computer All components are located on the Main CPU board inside the case housing. Refer to Section 3 for disassembly assembly procedures.

3.1.2 Reset Circuit

The Model 4P reset circuit provides the neccessary reset pulses to all circuits during power up and reset operations R25 and C218 provide a time constant which holds the input of U121 low during power-up. This allows power to be stable to all circuits before the RESET* and RESET signals are applied. When C218 charges to a logic high, the output of U121 triggers the input of a retriggerable one-shot multivibrator (U1). U1 outputs a pulse with an approximate width of 70 microsecs. When the reset switch is pressed on the front panel, this discharges C218 and holds the input of U121 low until the switch is released. On release of the switch. C218 again charges up. triggering U121 and U1 to reset the microcomputer.

3.1.3 CPU

The central processing unit (CPU) of the Modél 4P microcomputer is a Z80A microprocessor. The Z80A is capable of running in either 2 MHz or 4 MHz mode. The CPU controls all functions of the microcomputer through use of its address lines (A0-A15), data lines (D0-D7), and control lines (M1. IOREQ. /RD, /WR. /MREQ, and /RFSH). The address lines (A0-A15) are buffered to other ICs through two 74LS244s (U68 and U26) which are enabled all the time with their enables pulled to GND. The control lines are buffered to other ICs through a 74F04 (U86). The data lines (D0-D7) are buffered through a bi-directional 74LS245 (U71) which is enabled by BUSEN* and the direction is controlled by BUSDIR*.

3.1.4 System Timing

The main timing reference of the microcomputer with the exception of the FDC circuit. comes from a 20 2752 MHz Crystal Oscillator (Y1) This reference is divided and used for generating all necessary timing for the CPU. video circuit and RS-232-C circuit. The output of the crystal oscillator is filtered by a ferritte bead (FBS). 470 ohm resistor (R46) and a 68 pf capacitor (C242). After being filtered it is fed into U126 a 16R6A. PAL (Programmable Array Logic) where it is divided by 2 to generate a 10 1376 MHz signal (10M) for the 64 X 16 video display U126 divides the 20 2752 MHz by 4 to generate a 5 0688 MHz signal (RS232-CLK) for the baud rate generator in the RS-232-C circuit. The CPU clock is also generated by U126 which can be either 2 or 4 MHz depending on the state of FAST input.

(pin 9 of U126) If FAST is a logic low the 20 2752 MHz is divided by 10 which generates a 2 2752 MHz signal. If FAST is a logic high, the 20 2752 MHz is divided by 5 which generates a 4 05504 MHz signal. The CPU clock (PCLK) is fed through an active pull-up circuit which generates a full 5-volt swing with fast rise and fall times required by the Z80A. U126. The 16R6A PAL generates all symmetrical output signals and also does not allow the PCLK output to short cycle or generate a low or high pulse under 110 nanoseconds which the Z80A also requires Refer to System Timing Fig. 3-2.

3.1.4.1 Video Timing

The video timing is controlled by a 10L8 PAL (U127) and a fourbit synchronous counter U128 (74LS161) These two ICs generate all the necessary timing signals for the four video modes: $64\times16.32\times16.80\times24.$ and 40×24 Two reference clock signals are required for the four video modes. One reference clock, the 10 1376 MHz signal (10M), is generated by U126 and is used by the 64 x 16 and 32 x 16 modes. The second reference clock is a 12 672 MHz (12M) signal which is generated by a Phase Locked Loop (PLL) circuit and is used by the 80 x 24 and 40 x 24 modes. The PLL circuit consists of U147 (74LS93). U148 (NE564 PLL), and U149 (74LS90). The original 20 2752 MHz clock is divided by 16 through U147 which generates a 1 2672 MHz signal. The output of U147 is reduced in amplitude by the voltage divider network R27 and R28 and the output is coupled to the reference input of U148 by C227

The PLL (NE564) is adjusted to oscillate at 12 672 MHz by the tuning capacitor C231 This 12 672 MHz clock is then divided by 10 through U149 to generate a second 1 2672 MHz signal which is fed to a second input of U148. The two 1 2672 MHz signals are compared internally to the PLL where it corrects the 12 672 MHz output so it is synchronized with the 20 2752 MHz clock.

MODSEL and 8064* signals are used to select the desired video mode 8064* controls which reference clock is used by U127 and MODSEL controls the single or double character width mode Refer to the following chart for selecting each video mode

MODSEL	Video Mode
0	64 x 16
1	32 x 16
0	80 x 24
1	40 x 24
	0

*This is the state to be written to latch U89 Signal is inverted before being input to U127

Figure 3-2. System Timing

DCLK, the reference clock selected, is output from U127 DCLK is fed back into U127 for internal timing reference and is also fed to the clock input of U128 (74LS161). U128 is configured to preload with a count of 9 each time it reaches a count of 0 This generates a signal output of TC (128 pin 15) that occurs at the start of every character time of video output. TC is used to generate LOADS* (Load Shift Register) QA and QC of U128 are used to generate SHIFT*, XADR7*, CRTCLK and LOAD* for proper timing for the four video modes QA, QB, and QC which are referred to as H, I, and J are fed to the Graphics Port J7 for reference timings of Hires graphics video. Refer to Video Timing, Figs. 3-3 and 3-4 for timing reference.

3.1.5 Address Decode

The Address Decode section will be divided into two subsections: Memory Map decoding and Port Map decoding.

3.1.5.1 Memory Map Decoding

Memory Map Decoding is accomplished by a 16L8 PAL (U109) Four memory map modes are available which are compatible with the Model III and Model 4 microcomputers. A second 16L0 PAL (U110) is used in conjunction with U109 for the memory map control which also controls page mapping of the 32K RAM pages. Refer to Memory Maps below

3.1.5.2 Port Map Decoding

Port Map Decoding is accomplished by three 74LS138s (U87, U88, and U107) These ICs decode the low order address (AO-7) from the CPU and decode the port being selected The IN' signal from U108 enables U87 which allows the CPU to read from a selected port and the OUT' signal, also from U108, enables U88 which allows the CPU to write to the selected port U107 only decodes the address and the IN' and OUT' signals are ANDed with the generated signals

3.1.6 ROM

The Model 4P contains only a 4K x 8 Boot ROM (U70) This ROM is used only to boot up a Disk Operating System into the RAM memory If Model III operation or DOS is required, then the RAM from location 0000-37FFH must be loaded with an image of the Model III or 4 ROM code and then executed A file called MODEL A/III is supplied with the Model 4P which contains the ROM image for proper Model III operation On power-up, the Boot ROM is selected and mapped into location 0000-0FFFH. After the Boot Sector or the ROM Image is loaded, the Boot ROM must be mapped out by OUTing to port 9CH with D0 set or by selecting Memory Map modes 2 or 3. In Mode 1 the RAM is write enabled for the full 14K. This allows the RAM area mapped where Boot ROM is located to be written to while executing out of the Boot ROM Refer to Memory Maps.

The Model 4P Boot ROM contains all the code necessary to initialize hardware, detect options selected from the keyboard read a sector from a hard disk or floppy, and load a copy of the Model III ROM Image (as mentioned) into the lower 14K of RAM.

The firmware is divided into the following routines:

- · Hardware Initialization
- Keyboard Scanner
- Control
- . Floppy and Hard Disk Driver
- Disk Directory Searcher
- · File Loader
- Error Handler and Displayer
- RS-232 Boot
- Diagnostic Package

Theory of Operation

This section describes the operation of various routines in the ROM Normally the ROM is not addressable by normal use However there are several routines that are available through fixed calling locations and these may be used by operating systems that are booling

On a power-up or RESET condition the Z80 s program counter is set to address 0 and the boot ROM is switched-in. The memory map of the system is set to Mode 0. (See Memory Map for details.) This will cause the Z80 to fetch instructions from the boot ROM.

The Initialization section of the Boot ROM now performs these functions:

- 1 Disables maskable and non-maskable interrupts
- 2 Interrupt mode 1 is selected
- 3 Programs the CRT Controller
- 4 Initializes the boot ROM control areas in RAM
- 5 Sets up a stack pointer
- 6 Issues a Force Interrupt to the Floppy Disk Controller to abort any current activity
- 7 Sets the system clock to 4mhz
- 8 Sets the screen to 64 x 16
- 9 Disables reverse video and the alternate character sets
- 10 Tests for < > key being pressed*
- 11 Clears all 2K of video memory
- This is a special test If the < > is being pressed, then control is transferred to the diagnostic package in the ROM. All other keys are scanned via the Keyboard Scanner.

Figure 3-3. Video Timing 64 x 16 Mode 80 x 24 Mode

Figure 3-4. Video Timing 32 x 16 Mode 40 x 24 Mode

The Keyboard scanner is now called it scans the keyboard for a set period of time and returns several parameters based on which, if any, keys were pressed

The keyboard scanner checks for several different groups of keys. These are shown below:

Function Group	Selection Group
<f1></f1>	Α
<f2></f2>	В
<f3></f3>	С
<1>	D
<2>	E
<3>	F
<left-shift></left-shift>	G
<right-shift></right-shift>	
<ctrl></ctrl>	
<caps></caps>	

Special Keys	Misc Keys
< P >	<enter -<="" th=""></enter>
<l></l>	Break
<n></n>	

When any key in the Function Group is pressed. it is recorded in RAM and will be used by the Control routine in directing the action of the boot. If more than one of these keys are pressed during the keyboard scan, the last one detected will be the one that is used. The Function group keys are currently defined as:

<f1> or <1></f1>	Will cause hard disk boot
<f2> or <2></f2>	Will cause floppy disk boot
<f3> or <3></f3>	Will force Model III mode
<left-shift></left-shift>	Reserved for future use
<right-shift></right-shift>	Boot from RS-232 port
<ctrl></ctrl>	Reserved for future use
<caps></caps>	Reserved for future use

The Special keys are commands to the Control routine which direct handling of the Model III ROM-image Each key is detected individually

<p></p>	When loading the Model III ROM image, the user will be prompted when the disks can be switched or when ROM
<n></n>	BASIC can be entered by pressing Break Instructs the Control routine to not load the Model III ROM image, even if it appears that the operating system being booted requires it

Instructs the Control routine to load the Model III ROM image even if it is already loaded. This is useful if the ROM image has been corrupted or when switching ROM images. (Note that this will not cause the ROM-image to be loaded if the boot sector check indicates that the Model III ROM image is not needed. Press. F3. or F3.

and <: L > to accomplish that

The Selection group keys are used in determining which file will be read from disk when the ROM image is loaded. For details of this operation, see the Disk Directory Searcher. If more than one of the Selection group keys are pressed, the last one detected will be the one that is used.

The Miscellaneous keys are:

<Enter>

<L>

<Break> Pressing this key is simply recorded by setting location 405BH non-zero. It is up to an operating system to use this flag if desired.

Terminates the Keyboard routine Any other keys pressed up to that time will be acted upon Enter • is useful for experienced users who do not want to wait until the keyboard timer expires

The Control section now takes over and follows the following flowchart

Notes:

(1) If the boot sector was not 256 bytes in length. then it is assumed to be a Model III package, and the ROM image will be needed. If the sector is 256 bytes in length, then the sector is scanned for the sequence CDxx00H. The CD is the first byte of a Z80 unconditional subroutine call. The next byte can have any value. The third byte is tested against a zero. What this check does is test for any references to the first 256 bytes of memory. All Radio Shack Model III operating systems, and many other packages all reference the ROM at some point during the boot sector. Most boot sectors will display a message if the system cannot be loaded. To save space, these routines use the Model III ROM calls to display the message. Several ROM calls have their entry points in the first 256 bytes of memory, and these references are detected by the boot ROM.

Packages that do not reference the Model III ROM in the boot sector can still cause the Model III ROM image to be loaded by coding a CDxx00 somewhere in the boot sector It does not have to be executable. At the same time, Model 4 packages must take care that there is no sequence of bytes in the boot sector that could be mis-interpreted to be a reference to the Boot ROM. An example of this would be sequence 06CD0E00, which is a LD B.0CDH and a LD C.0. If the boot sector cannot be changed, then the user must press the <F3. Key each time the system is started to inform the ROM that the disk contains a Model III package which needs the Model III ROM image.

- (2) If you are loading a Model 4 operating system, then the boot ROM will always transfer control to the first byte of the boot sector, which is at 4300H. If you are loading a Model III operating system or about to use Model III ROM BASIC, then the transfer address is 3015H. This is the address of a jump vector in the "C" ROM of the Model III ROM image, and this will cause the system to behave exactly like a Model III. If the ROM image file that is loaded has a different transfer address, then that address will be used when loading is complete. If the image is already present, the Boot ROM will use 3015H.
- (3) Two different tests are done to insure that the Model III ROM image is present. The first test is to check every third location starting at 3000H for a C3H. This is done for 10 locations. If any of these locations does not contain a C3H, then the ROM image is considered to be "not present". The next test is to check two bytes at location 000BH. If these addresses contain E9E1H, then the ROM image is considered to be "present".
- (4) See Disk Director Searcher for more information
- (5) See File Loader for more information
- (6) The RS-232 loader is described under RS-232 Boot

Disk Directory Searcher

When the Model III ROM image is to be loaded, it is always read from the floppy in drive 0

Before the operation begins, some checks are made First, the boot sector is read in from the floppy and the first byte is checked to make sure it is either a 00H or a FEH. If the byte contains some other value, no attempt will be made to read the ROM image from that disk. The location of the directory cylinder is then taken from the boot sector and the type of disk is determined. This is done by examining the Data Address Mark that

was picked up by the Floppy Disk Controller (FDC) during the read of the sector If the DAM equals 1, the disk is a TRSDOS 1 x style disk. If the DAM equals 0, then the disk is a LDOS 5 1/TRSDOS 6 style disk. This is important since TRSDOS 1 x disks number sectors starting with 1 and LDOS style disks number sectors starting with 0

Once the disk type has been determined, an extra test is made if the disk is a LDOS style disk. This test reads the Granule Allocation Table (GAT) to determine if the disk is single sided or double sided.

The directory is then read one record at a time and a compare is made against the pattern 'MODEL9' for the filename and Ill' for the extension. The '%' means that any character will match this position If the user pressed one of the selection keys (A-G) during the keyboard scan, then that character is substituted in place of the '%' character. For example, if you pressed 'D', then the search would be for the file 'MODELD', with the extension 'Ill'. The searching algorithm searches until it finds the entry or it reaches the end of the directory.

Once the entry has been found, the extent information for that file is copied into a control block for later use

File Loader

The file loader is actually two modules — the actual loader and a set of routines to letch bytes from the file on disk. The loader is invoked via a RST 28H. The byte fetcher is called by the loader using RST 20H. Since restart vectors can be re-directed, the same loader is used by the RS-232 boot. The difference is that the RST 20H is redirected to point to the RS-232 data receiving routine. The loader reads standard loader records and acts upon two types:

01 Data Load

- 1 byte with length of block, including address
- 1 word with address to load the data
- n bytes of data, where n + 2 equals the length specified

02 Transfer Address

- 1 byte with the value of 02
- 1 word with the address to start execution at

Any other loader code is treated as a comment block and is ignored. Once an 02 record has been found, the loader stops reading, even if there is additional data, so be sure to place the 02 record at the end of the file

Floppy and Hard Disk Driver

The disk drivers are entered via RST 8H and will read a sector anywhere on a floppy disk and anywhere on head 1 (top-head) in a hard disk drive Either 256 or 512 byte sectors are readable by these routines and they make the determination of the sector size The hard disk driver is compatible with both the WD1000 and the WD1010 controllers The floppy disk driver is written for the WD1793 controller

Serial Loader

Invoking the serial loader is similar to forcing a boot from hard disk or floppy. In this case the right shift key must be pressed at some time during the first three seconds after reset. The program does not care if the key is pressed forever, making it convenient to connect pins 8 and 10 of the keyboard connector with a shorting plug for bench testing of boards. This assumes that the object program being loaded does not care about the key closure.

Upon entry, the program first asserts DTR (J4 pin 20) and RTS (J4 pin 4) true Next, "Not Ready" is printed on the topmost line of the video display Modem status line CD (J4 pin 8) is then sampled The program loops until it finds CD asserted true At that time the message "Ready" is displayed Then the program sets about determining the baud rate from the host computer

To determine the baud rate, the program compares data received by the UART to a test byte equal to '55 hex The receiver is first set to 19200 baud if ten bytes are received which are not equal to the test byte, the baud rate is reduced. This sequence is repeated until a valid test byte is received. If ten failures occur at 50 baud, the entire process begins again at 19200 baud. If a valid test byte is received, the program waits for ten more to arrive before concluding that it has determined the correct baud rate. If at this time an improper byte is received or a receiver error (overrun, framing, or parity) is intercepted, the lask begins again at 19200 baud.

In order to get to this point, the host or the modern must assert CD true. The host must transmit a sequence of test bytes equal to 55' hex with 8 data bits, odd parity, and 1 or 2 stop bits. The test bytes should be separated by approximately 0.1 second to avoid overrun errors.

When the program has determined the baud rate, the message:

"Found Baud Rate x"

is displayed on the screen, where "x' is a letter from A to P meaning:

A = 50 baud	E = 150	I = 1800	M = 4800
B = 75	F = 300	J = 2000	N = 7200
C = 110	G = 600	K = 2400	O = 9600
D = 134.5	H = 1200	L = 3600	P = 19200

The same message less the character signifying the baud rate is transmitted to the host, with the same baud rate and protocol This message is the signal to the host to stop transmitting test bytes

After the program has transmitted the baud rate message, it reads from the UART data register in order to clear any overrun error that may have occurred due to the test bytes coming in during the transmission of the message. This is because the receiver must be made ready to receive a sync byte signalling the beginning of the command file. For this reason, it is important that the host wait until the entire baud rate message (16 characters) is received before transmitting the sync byte, which is equal to 'FF' hex.

When the loader receives the sync byte, the message:

"Loading"

is displayed on the screen. Again, the same message is transmitted to the host, and, again, the host must wait for the entire transmission before starting into the command file

If the receiver should intercept a receive error while waiting for the sync byte, the entire operation up to this point is aborted The video display is cleared and the message:

Error, x"

is displayed near the bottom of the screen, where "x" is a letter from B to H, meaning:

B = parity error

C = framing error

D = parity & framing errors

E = overrun error

F = parity & overrun errors

G = framing & overrun errors

H = parity & framing & overrun errors

The message:

"Error"

is then transmitted to the host. The entire process is then repeated from the "Not Ready" message A six second delay is inserted before reinitialization. This is longer than the time required to transmit five bytes at 50 baud, so there is no need to be extra careful here.

If the sync byte is received without error, then the "Loading" message is transmitted and the program is ready to receive the command file After receiving the "Loading" message the host can transmit the file without nulls or delays between bytes

(Since the file represents Z80 machine code and all 256 combinations are meaningful, it would be disastrous to transmit nulls or other ASCII control codes as fillers, acknowledgement, or start-stop bytes. The only control codes needed are the standard command file control bytes.)

Data can be transmitted to the loader at 19200 baud with no delays inserted. Two stop bits are recommended at high baud rates.

See the File Loader description for more information on file loading

If a receive error should occur during file loading, the abort procedure described above will take place, so when attempting remote control, it is wise to monitor the host receiver during transmission of the file. When the host is near the object board, as is the case in the factory application, or when more than one board is being loaded, it may be advantageous or even necessary to ignore the transmitted responses of the object board(s) and to manually pace the test byte, sync byte, and command file phases of the transmission process, using the video display for handshaking

System Programmers Information

The Model 4P Boot ROM uses two areas of RAM while it is running These are 4000H to 40FFH and 4300H to 43FFH. (For 512 byte boot sectors, the second area is 4300H to 44FFH.) If the Model III ROM Image is loaded, additional areas are used See the technical reference manual for the system you are using for a list of these areas.

Operating systems that want to support a software restart by reexecuting the contents of the boot ROM can accomplish this in one of two ways. If the operating system relies on the Model III ROM Image, then jump to location 0 as you have in the past. If the operating system is a Model 4 mode package, a simple way is to code the following instructions in your assembly and load them before you want to reset:

Absolute Location	Instruc	tion
0000	DI	
0001	LD	A.1
0003	OUT	(9CH).A

These instructions cause the boot ROM to become addressable After executing the OUT instruction, the next instruction executed will be one in the boot ROM (These instructions also exist in the Model III ROM image at location 0) The boot ROM has been written so that the first instruction is at address 0005. The hardware must be in memory mode 0 or 1, or else the boot ROM will not be switched in This operation can be done with an OUT instruction and then a RST 0 can be executed to have the ROM switched in

Restarts can be redirected at any time while the ROM is switched in All restarts jump to fixed locations in RAM and these areas may be changed to point to the routine that is to be executed

Restart	RAM Location	Default Use
0	none	Cold Start/Boot
8	4000H	Disk I/O Request
10	4003H	Display string
18	4006H	Display block
20	4009H	Byte Fetch (Called by Loader)
28	400CH	File Loader
30	400FH	Keyboard scanner
38	4012H	Reserved for future use
66	4015H	NMI (Floppy I/O Command
		Complete)

The above routines have fixed entry parameters. These are described here

Disk I/O Request (RST 8H)

ΝZ

3

4 5

6

7

8

9

11

12

Error Codes

Digit to marlange (c	101 011)		
Accepts			
A	1 for floppy.	2 for hard disk	
В	Command		
	Initialize	1	
	Restore	4	
	Seek	6	
	Read	12 (All reads have an im-	
		plied seek)	
С	Sector number to read		
	The conter	nts of the location disktype	
		e added to this value before	
		ead If the disk is a two sided	
		add 18 to the sector number.	
DE	•	umber. (Only E is used in	
	floppy opera	•	
HL		ere data from a read opera-	
	tion is to be	stored	
Returns			
Z	Success ()	peration Completed	
2	Juccess, O	peration completed	

Error Error code in A

drive door open)

CRC Error

Seek Error

Lost Data

ID Not Found

Hard Disk drive is not ready

Floppy disk drive is not ready

Hard Disk drive is not available

Floppy disk drive is not available

Drive Not Ready and no Index (Disk in

Display String (RST 10H)

Accepts	
HL	Pointer to text to be displayed.
	Text must be terminated with a null (0).
DE	Offset position on screen where text is to
	be displayed
	(A 0000H will be the upper left-hand cor-
	ner of the display)
Datum	

	be displayed
	(A 0000H will be the upper left-han ner of the display)
Returns	
Success Always	
Α	Altered
DE	Points to next position on video
HL	Points to the null (0)

Display Block (RS	ST 18H)		
Accepts HL	Points + 0 + 2 null + 4 null		n the format: terminated with terminated with
or	+ n + n	word FFFFH word FFFEH	vector
If Z flag is set on e			Offset ffset is read from
	und Thi	after the previous s is used heavily in n error messages	
Returns Success Always DE	Point	s to next position o	n video
Byte Fetch (RST	20H)		
Accepts None Returns Z NZ		ess, byte in A re, error code in A	

Any errors from the disk I/O call and:

extents

is not ready

ROM Image can't be loaded - Too many

ROM Image can't be loaded - Disk drive

Errors

2

10

File Loader (RST 28H)

Accepts None

0

Returns

Success

NZ Failure.

Failure, error code in A

Errors

Any errors from the disk I/O call or the

byte fetch call and:

The ROM image was not found on drive 0

There are several pieces of information left in memory by the boot ROM which are useful to system programmers. These are shown below:

RAM Location 401DH 4055H	Description ROM Image Selecte selected or A-G) Boot type 1 = Floppy 2 = Hard disk 3 = ARCNET 4 = RS-232C 5 - 7 = Reserved	d (% for none
4056H	Boot Sector Size (1 f	for 256. 2 for 512)
4057H	RS-232 Baud Rate (232 boot)	only valid on RS-
4059H	Function Key Select 0 = No function key <f1> or <1> <f2> or <2> <f3> or <3> <caps> <ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri><ctri<<ctr>Ctri<<ctr>Ctri<<ctr>Ctri<<ctr>Ctri<<ctr>Ctri<<ctr>Ctri<<ctr>Ctri<<ctr>Ctri<<ctr>CtriCtriCtri<<ctr>Ctri<</ctr></ctr></ctr></ctr></ctr></ctr></ctr></ctr></ctr></ctri<<ctr></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></ctri></caps></f3></f2></f1>	selected 86 87 88 85 84 62 83 80-81 and 89-90
405BH	Break Key Indication <break> pressed)</break>	(non-zero if
405CH	Disk type	(0 for LDOS/ TRSDOS 6.1 for TRSDOS 1 x)

Keep in mind that Model III ROM image will initialize these areas, so this information is useful only to the Model 4 mode programmer

3.1.7 RAM

Two configurations of Random Access Memory (RAM) are available on the Model 4P: 64K and 128K The 64K and 128K option use the 6665-type 64K x 1 200NS Dynamic RAM, which requires only a single +5v supply voltage

The DRAMs require multiplexed incoming address lines. This is accomplished by ICs U111 and U112 which are 74LS157 multiplexers Data to and from the DRAMs are buffered by a 74LS245 (U117) which is controlled by Page Map PAL, U110 The proper timing signals RASO*, RAS1*. MUX*, and CAS* are generated by a delay line circuit U97 U115 (1/2 of a 74S112) and U116 (1/4 of a 74F08) are used the generate a precharge circuit During M1 cycles of the Z80A in 4 MHz mode, the high time in MREQ has a minimum time of 110 nanosecs. The specification of 6665 DRAM requires a minimum of 120 nanosecs so this circuit will shorten the MREQ signal during the M1 cycle The resulting signal PMREQ is used to start a RAM memory cycle through U113 (a 74S64) Each different cycle is controlled at U113 to maintain a fast M1 cycle so no wait states are required The output of U113 (PRAS*) is ANDed with RFSH to not allow MUX* and CAS* to be generated during a REFRESH cycle PRAS* also generates either RAS0* or RAS1*, depending on which bank of RAM the CPU is selecting GCAS* generated by the delay line U97 is latched by U115 (1/2 of a 74S112) and held to the end of the memory cycle. The output of U115 is ANDed with VIDEO signal to disable the CAS* signal from occurring if the cycle is a video memory access. Refer to M1 Cycle Timing (Figure 3-8. and 3-9), Memory Read and Memory Write Cycle Timing (Figure 3-10.) and (Figure 3-11.1

Figure 3-5. Memory

32K RAM	32K RAM
(DESPAGE, ENPAGE, SRCPAGE) (1,1,1)	(\$,1,\$)
RAM 14K KEYBD 1K VIDEO 1K RAM 16K	RAM 32K

MODE 1

MODE 1

32K RAM 32K RAM RAM 14K
WRITE ONLY 4K (DESPAGE, ENPAGE,
SRCPAGE) (1,1,0) BOOT ROM 4K KEYBD 1K VIDEO 1K RAM 32K RAM 16K

LEVEL 5V ØV 5V STATE B B F SELØ = SEL1 = ROM =

SELØ = SEL1 = ROM =

LEVEL

STATE

エダエ

Hardware 73

MODE 2

Hardware 75

Figure 3-9. M1 Cycle Timing (4MHZ) 50ns/dir.

Figure 3-10. Memory Read Cycle Timing

Figure 3-11. Memory Write Cycle Timing

Memory Map - Model 4P

Mode 0	SEL0 = 0 = 0V SEL1 = 0 = 0V		Mode 1	SEL0 = 1 = +5V SEL1 = 0 = 0V	
	ROM = 1 = 0V			ROM = 0 = +5V	
0000 — 0FFF	Boot ROM	4K	0000 — 37FF	RAM	14K
1000 37FF	RAM (Read Only)	10K	3800 3BFF	Keyboard	1K
37E8 37E9	Printer Status (Read Only)	2	3C00 — 3FFF	Video	1K
3800 — 3BFF	Keyboard	1K	4000 FFFF	RAM	48K
3C00 - 3FFF	Video	1K			
4000 FFFF	RAM	48K			
			Mode 2	SEL0 = 0 = 0V	
				SEL1 = 1 = +5V	
Mode 0	SEL0 = 0 = 0V			ROM = X = Don't Care	
	SEL1 = 0 = 0V				
	ROM = 0 = +5V		0000 — F3FF	RAM	61K
			F400 — F7FF	Keyboard	1K
0000 37FF	RAM (Read Only)	14K	F800 FFFF	Video	2K
37E8 — 37E9	Printer Status (Read Only)	2			
3800 3BFF	Keyboard	1K			
3C00 — 3FFF	Video	1K	Mode 3	SEL0 = 1 = +5V	
4000 — FFFF	RAM	48K		SEL1 = 1 = +5V	
				ROM = X = Don't Care	
Mode 1	SEL0 = 1 = +5V		0000 — FFFF	RAM	64K
	SEL1 = 0 = 0V				
	ROM = 1 = 0V				
0000 — 0FFF	Boot ROM	4K			
0000 0FFF	RAM (Write Only)	4K			
1000 — 37FF	RAM	10K			
3800 — 3BFF	Keyboard	1K			
3C00 — 3FFF	Video	1K			
4000 FFFF	RAM	48K			

I/O Port Assignment

	Normally		
Port #	Used	Out	In
FC FF	FF	CASSOUT '	MODIN*
F8 — FB	F8	LPOUT .	LPIN.
F4 F7	F4	DRVSEL '	(RESERVED)
F0 — F3	-	DISKOUT .	DISKIN .
F0	F0	FDC COMMAND REG	FDC STATUS REG
F1	F1	FDC TRACK REG	FDC TRACK REG
F2	F2	FDC SECTOR REG.	FDC SECTOR REG
F3	F3	FDC DATA REG	FDC DATA REG
EC EF	EC	MODOUT *	RTCIN .
E8 — EB	-	RS232OUT ·	RS232IN *
E8	E8	UART MASTER RESET	MODEM STATUS
E9	E9	BAUD RATE GEN REG	(RESERVED)
EA	EA	UART CONTROL AND	UART STATUS REG
		MODEM CONTROL REG	
EB	EB	UART TRANSMIT	UART HOLDING REG
		HOLDING REG	(RESET D R)
E4 — E7	E4	WR NMI MASK REG. *	RD NMI STATUS *
E0 E3	Εū	WRINT MASK REG *	BD INT MASK BEG .
A0 - DF	-	(RESERVED)	(RESERVED)
9C 9F	9C	BOOT *	(RESERVED)
94 — 9B		(RESERVED)	(RESERVED)
90 93	90	SEN'	(RESERVED)
8C 8F		GSEL0 .	GSEL0 '
88 — 8B	-	CRTCCS *	(RESERVED)
88, 8A	88	CRCT ADD REG	(RESERVED)
89, 8B	89	CRCT DATA REG	(RESERVED)
84 87	84	OPREG *	(RESERVED)
80 — 83		GSEL1 *	GSEL1 .

I/O Port Description

CASSOUT . Name: Port Address: FC - FF

Access:

WRITE ONLY

Description: Output data to cassette or for sound

generation

The Model 4P does not support cassette storage.

this port is only used to generate sound that was to be output via cassette port. The Model 4P sends

data to onboard sound circuit

D0 = Cassette output level (sound data output)

D1 = Reserved

D2 - D7 = Undefined

MODIN ' (CASSIN ') Name:

Port Address: FC --- FF Access: READ ONLY

Description: Configuration Status

DO = 0

D1 = CASSMOTORON STATUS

D2 = MODSEL STATUS

D3 = ENALTSET STATUS

= ENEXTIO STATUS D4

D5 = (NOT USED)

D₆ = FAST STATUS

D7 = 0

Name: LPOUT * Port Address: F8 - FB Access:

WRITE ONLY Description: Output data to line printer

D0 - D7 = ASCII BYTE TO BE PRINTED

Name: LPIN . Port Address: F8 - FB Access: READ ONLY

Description: Input line printer status

D0 - D3 = (RESERVED)

D4 = FAULT 1 = TRUE 0 = FALSE

D5 = UNIT SELECT 1 = TRUE 0 = FALSE

D6 □ OUTPAPER 1 = TRUE 0 = FALSE

D7 = BUSY 1 = TRUE 0 = FALSE

Name: DRVSEL . Port Address: F4 - F7 Access: WRITE ONLY

Description: Output FDC Configuration

Output to this port will ALWAYS cause a 1-2 mscc

(Microsecond) wait to the Z80

D0 = DRIVE SELECT 0

D1 = DRIVE SELECT 1

D2 = (RESERVED)

D3 = (RESERVED)

D4 = SDSEL 0 = SIDE 01 = SIDE 1

D5 = PRECOMPEN

> 0 = No write precompensation 1 = Write Precompensation enabled

D6 = WSGEN

0 = No wait state generated 1 = wait state generated

Note: This wait state is to sync Z80 with FDC chip during

FDC operation

D7 = DDEN .

> 0 = Single Density enabled (FM) 1 = Double Density enabled (MFM)

DISKOUT . Name:

Port Address: F0 - F3 WRITE ONLY Access:

Description: Output to FDC Control Registers

Port F0 = FDC Command Register

Port F1 = FDC Track Register

Port F2 = FDC Sector Register

Port F3 = FDC Data Register

(Refer to FDC Manual for Bit Assignments)

Name: DISKIN .

Port Address: F0 - F3

Access: READ ONLY

Description: Input FDC Control Registers

Port F0 - FDC Status Register

Port F1 = FDC Track Register

Port F2 = FDC Sector Register

Port F3 = FDC Data Register

(Refer to FDC Manual for Bit Assignment)

MODOUT . Name:

Port Address: EC - EF WRITE ONLY Access:

Description: Output to Configuration Latch

= (RESERVED) D0

= CASSMOTORON (Sound enable) D1

0 = Cassette Motor Off (Sound enabled)

1 = Cassette Motor On (Sound disabled)

D2 = MODSEL

0 = 64 or 80 character mode

1 = 32 or 40 character mode

D3 = ENALTSET

0 = Alternate character set disabled

1 = Alternate character set enabled

D4 = ENEXTIO

0 = External IO Bus disabled

1 = External IO Bus enabled

= (RESERVED) D5

= FAST D6

D7

0 = 2 MHZ Mode

1 = 4 MHZ Mode

= (RESERVED)

RTCIN * Name: Port Address: EC - EF

Access: READ ONLY

Description: Clear Real Time Clock Interrupt

D0 - D7 = DON'T CARE

RS232OUT * Name: Port Address: E8 - EB

Access: WRITE ONLY

Description: UART Control, Data Control, Modern Control,

BRG Control

Port E8 = UART Master Reset

Port E9 = BAUD Rate Gen Register

Port EA = UART Control Register (Modern Control Reg)

Port EB = UART Transmit Holding Reg

(Refer to Model III or 4 Manual for Bit Assignments)

Name: RS232IN * Port Address: E8 -- EB

READ ONLY Access: Description: Input UART and Modern Status

Port E8 = MODEM STATUS

Port E9 = (RESERVED)

Port EA = UART Status Register

Port EB = UART Receive Holding Register (Resets DR)

(Refer to Model III or 4 Manual for Bit Assignments)

Name: WRNMIMASKREG *

Port Address: E4 — E7
Access: WRITE ONLY
Description: Output NMI Latch

D0 - D5 = (RESERVED)

D6 = ENMOTOROFFINT

0 = Disables Motoroff NMI 1 = Enables Motoroff NMI

D7 = ENINTRQ

0 = Disables INTRQ NMI 1 = Enables INTRQ NMI

Name: RDNMISTATUS *
Port Address: E4 — E7
Access: READ ONLY
Description: Input NMI Status

D0 = 0

D2 - D4 = (RESERVED)

D5 = RESET (not needed)

0 = Reset Asserted (Problem)

1 = Reset Negated

D6 = MOTOROFF

0 = Motoroff Asserted 1 = Motoroff Negated

D7 = INTRQ

0 = INTRQ Asserted 1 = INTRQ Negated

Name: WRINTMASKREG *
Port Address: E0 — E3

Access: WRITE ONLY
Description: Output INT Latch

D0 --- D1 = (RESERVED)

D2 = ENRTC

0 = Real time clock interrupt disabled1 = Real time clock interrupt enabled

D3 = ENIOBUSINT

0 = External IO Bus interrupt disabled

1 = External IO Bus interrupt enabled

D4 = ENXMITINT

0 = RS232 Xmit Holding Reg empty int

disabled

1 = RS232 Xmit Holding Reg empty int

enabled

D5 = ENRECINT

0 = RS232 Rec Data Reg full int disabled 1 = RS232 Rec Data Reg full int enabled

D6 = ENERRORINT

0 = RS232 UART Error interrupts disabled 1 = RS232 UART Error interrupts enabled

D7 = (RESERVED)

Name: RDINTSTATUS *
Port Address: E0 — E3
Access: READ ONLY
Description: Input INT Status

D0 - D1 = (RESERVED)

D2 = RTC INT

D3 = IOBUS INT

D4 = RS232 XMIT INT

D5 = RS232 REC INT

D6 = RS232 UART ERROR INT

D7 = (RESERVED)

Name: BOOT •
Port Address: 9C — 9F
Access: WRITE ONLY

Description: Enable or Disable Boot ROM

D0 = ROM *

0 = Boot ROM Disabled 1 = Boot ROM Enabled

D1 - D7 = (RESERVED)

Name: SEN *
Port Address: 90 — 93
Access: WRITE ONLY
Description: Sound output

D0 = SOUND DATA

D1 - D7 = (RESERVED)

Name: OPREG *

Port Address: 84

Access: WRITE ONLY

Description: Output to operation reg

DO = SELO

D1 = SEL1

SEL1	SEL0	MODE
0	0	0
0	1	1
1	0	2
1	1	3

D2 = 8064

0 = 64 character mode

1 = 80 character mode

D3 = INVERSE

0 = Inverse video disabled

1 = Inverse video enabled

D4 = SRCPAGE — Points to the page to be mapped

as new page 0 = U64K, L32K Page

1 = U64K, U32K Page

D5 = ENPAGE — Enables mapping of new page

0 = Page mapping disabled

1 = Page mapping enabled

D6 = DESPAGE — Points to the page where new

page is to be mapped

0 = L64K, U32K Page

1 = L64K, L32K Page

D7 = PAGE

0 = Page 0 of Video Memory

1 = Page 1 of Video Memory

3.1.8 Video Circuit

The heart of the video display circuit in the Model 4P is the 68045 Cathode Ray Tube Controller (CRTC), U85 The CRTC is a preprogrammed video controller that provides two screen formats: 64 by 16 and 80 by 24. The format is controlled by pin 3 of the CRTC (8064*). The CRTC generates all of the necessary signals required for the video display These signals are VSYNC (Vertical Sync), HSYNC (Horizontal Sync) for proper sync of the monitor. DISPEN (Display Enable) which indicates when video data should be output to the monitor, the refresh memory addresses (MA0-MA13) which addresses the video RAM, and the row addresses (RA0-RA4) which indicates which scan line row is being displayed. The CRTC also provides hardware scrolling by writing to the internal Memory Start Address Register by OUTing to Port 8BH. The internal cursor control of the 68045 is not used in the Model 4P video circuit.

Since the 80 by 24 screen requires 1,920 screen memory tocations, a 2K by 8 static RAM (U82) is used for the video RAM Addressing to the video RAM (U82) is provided by the 68045 when refreshing the screen and by the CPU when updating of the data is performed. These two sets of address lines are multiplexed by three 74LS157s (U83, U84, and U104) The multiplexers are switched by CRTCLK which allows the CRTC to address the video RAM during the high state of CRTCLK and the CPU access during the low state A10 from the CPU is controlled by PAGE* which allows two display pages in the 64 by 16 format. When updates to the video RAM are performed by the CPU, the CPU is held in a WAIT state until the CRTC is not addressing the video RAM. This operation allows reads and writes to video RAM without causing hashing on the screen The circuit that performs this function is a 74LS244 buffer (U103), an 8 bit transparent latch, 74LS373 (U102) and a Delay line circuit shared with Dynamic RAM timing circuit consisting of a 74LS74 (U95), 74LS32 (U94), 74LS04 (U74), 74LS00 (U96), 74LS02 (U75), and Delay Line (U97). During a CPU Read Access to the Video RAM, the address is decoded by the PAL U109 and asserts VIDEO* low. This is inverted by U74 (1/ 6 of 74LS04) which pulls one input of U96 (1/4 of 74LS00) and in turn asserts VWAIT * low to the CPU. RD is high at this time and is latched into U95 (1/2 of 74LS74) on the rising edge of XADR7*. XADR7* is inverse of CRTCLK which drives the CRTC (68045), and the address multiplexers U83, U84, and U104

When RD is latched by U95, the Q output goes low releasing WAIT* from the CPU. The same signal also is sent to the Delay Line (U97) through U116 (1/4 of 74F08) The Delay line delays the falling edge 240 ns for VLATCH* which latches the read data from the video RAM at U102. The data is latched so the CRTC can refresh the next address location and prevent any hashing MRD* decoded by U108 and a memory read is ORed with VIDEO* which enables the data from U102 to the data bus The CPU then reads the data and completes the cycle A CPU write is slightly more complex in operation. As in the RD cycle. VIDEO* is asserted low which asserts VWAIT* low to the CPU WR is high at this time which is NANDed with VIDEO and synced with CRTCLK to create VRAMDIS that disables the video RAM output. On the rising edge of XADR7*, WR is latched into U95 (1/2 of 74LS74) which releases VWAIT* and starts cycle through the Delay Line. After 30ns DLYVWR* (Delayed video write) is asserted low which also asserts VBUFEN* (Video Buffer Enable) low. VBUFEN* enabled data from the Data bus to the video RAM Approximately 120ns later DLYVWR* is negated high which writes the data to the video RAM and negates VBUFEN* turning off buffer. The CPU then completes WR cycle to the video RAM. Refer to Video RAM CPU Access Timing Figure 5-12 for timing of above RD or WR cycles.

During screen refresh, CRTCLK is high allowing the CRTC to address Video RAM. The data out of the video RAM is latched by LOAD* into a 74LS273 (U101). D7 is generated by INVERSE* through U125 (1/6 of 74S04), and U123 (1/4 of 74LS08). This decoding determines if character should be alpha-numeric only (if inverse high) or unchanged (INVERSE* low). The outputs of U101 are used as address inputs the character generator ROM (U42). A9 is decoded with ENALTSET (Enable Alternate Set) and Q7 of U101, which resets A9 to a low if Q7 and ENALTSET are high. See ENALTSET Control Table below.

ENALTSET	Q7	Q6	A9
0	0	0	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Hardware 86

RA0-RA3, row addresses from the CRTC are used to control which scan line is being displayed. The Model 4P has a 4-bit full adder 74LS283 (U61) to modify the Row address During a character display DLYGRAPHIC* is high which applies a high to all 4 bits to be added to row address. This will result in subtracting one from Row address count and allow all characters to be displayed one scan line lower. The purpose is so inverse characters will appear within the inverse block. When a graphic block is displayed DLYGRAPHIC* is low which causes the row address to be unmodified. Moving jumper from E14-E15 to E15-E16 will disable this circuit.

DLYCHAR* and DLYGRAPHICS are inverse signals and control which data is to be loaded into the shift register U63. When DLYCHAR* is low and DLYGRAPHIC* is high, the Character Generator ROM (U42) is enabled to output data: when DLYCHAR* is high and DLYGRAPHIC* is low the graphics characters from U41 (74LS15) is buffered by U43 (74LS244) to the shift register. The data is loaded into the shift register on the rising edge of SHIFT* when LOADS* is low. Blanking is accomplished by masking off LOADS* so no data will be loaded and zero data will be shifted out with the serial input of U63, pin 1, grounded. Serial video data is output U63 pin 13 and is mixed with inverse and/or hires graphics information by (1/4 or 74LS86) U143. The video data is then mixed with a DO7 Rate clock, either DOT* and DCLK, to create distinct dots on the monitor. DOT" and DCLK are inverse signals and are provided to allow a choice to obtain the best video results. The video information is filtered by F34, R45 (47 ohm resistor), and C241 (100 pf Cap) and output to video monitor. VSYNC and HSYNC are buffered by (1/2 of 74LS86) U143 and are also output to video monitor. Refer to Video Circuit Timing Figure 3-13, Video Blanking Timing Figure 3-14, and Inverse Video Timing Figure 3-15 for timing relationships of Video Circuit.

3.1.9 Keyboard

The keyboard interface of the Model 4P consists of open collector drivers which drive an 8 by 8 key matrix keyboard and an inverting buffer which buffers the key or keys pressed on the data bus. The open collector drivers (U56 and U57 (7416) are driven by address lines A0-A7 which drive the column lines of the keyboard matrix. The ROW lines of the keyboard are pulled up by a 1 5 kohm resistor pack RP2. The ROW lines are buffered and inverted onto the data bus by U58 (74LS240) which is enabled when KEYBD* is a logic low KEYBD* is a memory mapped decode of addresses 3800-3BFF in Model III Mode and F400-F7FF in Model 4/4P mode. Refer to the Memory Map under Address Decode for more information. During real time operation, the CPU will scan the keyboard periodically to check if any keys are pressed. If no key is pressed, the resistor pack RP2 keeps the inputs of U58 at a logic high. U58 inverts the data to a logic low and buffers it to the data bus which is read by the CPU If a key is pressed when the CPU scans the correct column line, the key pressed will pull the corresponding row to a logic low. U58 inverts the signal to a logic high which is read by the CPU

3.1.10 Real Time Clock

The Real Time Clock circuit in the Model 4P provides a 30 Hz (in the 2 MHz CPU mode) or 60 Hz (in the 4 MHz CPU mode) interrupt to the CPU. By counting the number of interrupts that have occurred, the CPU can keep track of the time. The 60 Hz vertical sync signal (VSYNC) from the video circuitry is used for the Real Time Clock's reference In the 2 MHz mode, FAST is a logic low which sets the Preset input, pin 4 of U22 (74LS74), to a logic high. This allows the 60 Hz (VSYNC) to be divided by 2 to 30 Hz. The output of 1/2 of U22 is ORed with the original 60 Hz and then clocks another 74LS74 (1/2 of U22). If the real time clock is enabled (ENRTC at a logic high), the interrupt is latched and pulls the INT* line low to the CPU When the CPU recognizes the interrupt, the pulse is counted and the latch reset by pulling RTCIN* low In the 4 MHz mode, FAST is a logic high which keeps the first half of U22 in a preset state (the Q* output at a logic low). The 60 Hz is used to clock the interrupts.

NOTE: If interrupts are disabled, the accuracy of the real time clock will suffer.

3.1.11 Line Printer Port

The Line Printer Port Interface consists of a pulse generator, an eight-bit latch, and a status line buffer. The status of the line printer is read by the CPU by enabling buffer U3 (74LS244) This buffer is enabled by LPRD' which is a memory map and port map decode. In Model III mode, only the status can be read from memory location 37E8 or 37E9. The status can be read in all modes by an input from ports F8-FB. For a listing of the bit status, refer to Port Map section.

After the printer driver software determines that the printer is ready for printing (by reading the correct status), the characters to be printed are output to Port F8-F8 U2, a 74LS374 eight-bit latch, latches the character byte and outputs to the line printer One-half of U1 (74LS123), a one-shot, is then triggered which generates an appropriate strobe signal to the printer which signifies a valid character is ready. The output of the one-shot is buffered by 1/6th of the U21 (74LS04) to prevent noise from the printer cable from flase-triggering the one-shot.

Gray Constitution of the c

Don't Great

Wardom

WAVEFORMS

Figure 3-13. Video Circuit Timing

Figure 3-14. Video Blanking Timing

Figure 3-15. Inverse Video Timing

3.1.12 Graphics Port

The Graphics Port (J7) on the Model 4P is provided to attach the optional Graphics Board. The port provides D0-D7 (Data Lines), A0-A3 (Address Lines), IN*, GEN* and RESET* for the necessary interface signals for the Graphics Board GEN* is generated by negative ORing Port selects GSEL0* (8C-8FH) and GSELI* (80-83H) together by (1/4 of 74LS08) U23 The resulting signal is negative ANDed with IORQ* by (1/4 of 74S32) U62. Seven timing signals are provided to allow synchronization of Main Logic Board Video and Graphics Board Video These timing signals are VSYNC, HSYNC, DISPEN, DCLK, H, I, and J. Three control signals from the Graphics Board are used to sync to CPU access and select different video modes WAIT* controls the CPU access by causing the CPU to WAIT till video is in retrace area before allowing any writes or reads to Graphics Board RAM, ENGRAF is asserted when Graphics video is displayed. ENGRAF also disables inverse video mode on Main Logic Board Video. CL166* (Clear 74L166) is used to enable or disable mixing of Main Logic Board Video and Graphics Board Video If CL166* is negated high, then mixing is allowed in all for video modes 80 x 24, 40 x 24, 64 x 16, and 32 x 16. If CL166* is asserted low, this will clear the video shift register U63, which allows no video from the Main Logic Board In this state 8064° is automatically asserted low to put screen in 80 x 24 video mode. Refer to Figure 3-16. Graphic Board Video Timing for timing relationships. Refer to the Model 4/ 4P Graphics Board Service information for service or technical information on the Graphics Board.

3.1.13 Sound

The sound circuit in the Model 4P is compatible with the Sound Board which was optional in the Model 4 Sound is generated by alternately setting and clearing data bit D0 during an OUT to port 90H. The state of D0 is latched by U130 (1/2 of a 74LS74) and the output is amplified by Q2 which drives a piezoelectric sound transducer. The speed of the software loop determines the frequency, and thus, the pitch of the resulting tone. Since the Model 4P does not have a cassette circuit, some existing software that used the cassette output for sound would have been lost. The Model 4P routes the cassette latch to the sound board through U142. When the CASSMOTORON signal is a logic low, the cassette motor is off, then the cassette output is sent to the sound circuit.

3.1.14 I/O Bus Port

The Model 4P Bus is designed to allow easy and convenient interfacing of I/O devices to the Model 4P The I/O Bus supports all the signals necessary to implement a device compatible with the Z80s I/O structure

Addresses:

A0 to A7 allow selection of up to 256* input and 256 output devices it external I/O is enabled

*Ports 80H to 0FFH are reserved for System use

Data

DB0 to DB7 allow transfer of 8-bit data onto the processor data bus is external I/O is enabled

Control Lines:

- M1* Z80A signal specifying an M1 or Operation Code Fetch Cycle or with IOREQ*, it specifies an Interrupt acknowledge
- IN* Z80A signal specifying than an input is in progress Logic AND of IOREQ* and WR*
- 3 OUT* Z80A signal specifying that an output is in progress Logic AND of IOREQ* and WR*
- 4 IOREQ* Z80A signal specifying that an input or output is in progress or with M1*, it specifies an interrupt acknowledge.
- 5 RESET* system reset signal.
- 6 IOBUSINT* input to the CPU signaling an interrupt from an I/O Bus device if I/O Bus interrupts are enabled
- 7 IOBUSWAIT* input to the CPU wait line allowing I/O Bus device to force wait states on the Z80 if external I/O is enabled
- 8 EXTIOSEL* input to I/O Bus Port circuit which switches the I/O Bus data bus transceiver and allows and INPUT instruction to read I/O Bus data

The address line, data line, and all control lines except RESET* are enabled only when the ENEXIO bit in port EC is set to one

To enable I/O interrupts, the ENIOBUSINT bit in the PORT E0 (output port) must be a one. However, even if it is disabled from generating interrupts, the status of the IOBUSINT* line can still read on the appropriate bit of CPU IOPORT E0 (input port)

See Model 4P Port Bit assignments for port 0FF, 0EC, and 0E0

Figure 3-16. Graphic Board Video Timing

The Model 4P CPU board is fully protected from "foreign I O devices" in that all the I/O Bus signals are buffered and can be disabled under software control. To attach and use and I/O device on the I/O Bus, certain requirements (both hardware and software) must be met.

For input port device use, you must enable external I/O devices by writing to port OECH with bit 4 on in the user software This will enable the data bus address lines and control signals to the I/O Bus edge connector. When the input device is selected, the hardware should acknowledge by asserting EXTIOSEL* low. This switches the data bus transceiver and allows the CPU to read the contents of the I/O Bus data lines See Figure 3-17 for the timing EXTIOSEL* can be generated by NANDing IN and the I/O port address.

Output port device use is the same as the input port device in use, in that the external I/O devices must be enabled by writing to port OECH with bit 4 on in the user software — in the same fashion.

For either input or output devices, the IOBUSWAIT* control line can be used in the normal way for synchronizing slow devices to the CPU. Note that since dynamic memories are used in the Model 4P. the wait line should be used with caution. Holding the CPU in a wait state for 2 msec or more may cause loss of memory contents since refresh is inhibited during this time. It is recommended that the IOBUSWAIT* line be held active no more than 500 µsec with a 25% duty cycle.

The Model 4P will support Z80 Mode 1 interrupts A RAM jump table is supported by the LEVEL II BASIC ROMs image and the user must supply the address of his interrupt service routine by writing this address to locations 403E and 403F. When an interrupt occurs, the program will be vectored to the user-supplied address if I/O Bus interrupts have been enabled. To enable I/O Bus interrupts, the user must set bit 3 of Port 0E0H.

3.1.15 FDC Circuit

The TRS-80 Model 4P Floppy Disk Interface provices a standard 5-1/4" floppy disk controller. The Floppy Disk Interface supports both single and double density encoding schemes Write precompensation can be software enabled or disabled beginning at any track, although the system software enables write precompensation for all tracks greater than twenty-one The amount of write precompensation is 250 nsec and is not adjustable The data clock recovery logic incorporates a digital data separator which achieves state-of-the-art reliability. One or two drives may be controlled by the interface. All data transfers are accomplished by CPU data requests. In double density operation, data transfers are synchronized to the CPU by forcing a wait to the CPU and clearing the wait by a data request from the FDC chip. The end of the data transfer is indicated by generation of a non-maskable interrupt from the interrupt request output of the FDC chip. A hardware watchdog timer insures that any error condition will not hang the wait line to the CPU for a period long enough to destroy RAM contents

"Inserted by Z80 CPU

Input or Output Cycles with Wait States

"Inserted by Z80 CPU

Coincident with IORQ* only an INPUT cycle

Figure 3-17. I/O Bus Timing Diagram

Control and Data Buffering

The Floppy Disk Controller Board is an I/O port-mapped device which utilizes ports E4H, F0H, F1H, F2H, F3H, and F4H. The decoding logic is implemented on the CPU board (Refer to Paragraph 5 1 5 Address Decoding for more information on Port Map) U31 is a bi-directional. 8-bit transceiver used to buffer data to and from the FDC and RS-232 circuits. The direction of data transfer is controlled by the combination of control signals DISKIN* and RS232IN* If either signal is active (logic low), U31 is enabled to drive data onto the CPU data bus. If both signals are inactive (logic high), U31 is enabled to receive data from the CPU board data bus A second buffer (U12) is used to buffer the FDC chip data to the FDC/RS232 Data Bus. (BD0-BD7). U12 is enabled all the time and it's direction controlled by DISKIN* Again, if DISKIN* is active (logic low), data is enabled to drive from the FDC chip to the Main Data Busses If DISKIN* is inactive (logic high), data is enabled to be transferred to the FDC

Nonmaskable Interrupt Logic

Dual D flip-flop U100 (74LS74) is used to latch data bits D6 and D7 on the rising edge of the control signal WRNMIMASKREG* The outputs of U100 enable the conditions which will generate a non-maskable interrupt to the CPU. The NMI interrupt conditions which are programmed by doing an OUT instruction to port E4H with the appropriate bits set. If data bit 7 is set. an FDC interrupt is enabled to generate an NMI interrupt. If data bit 7 is reset, interrupt requests request from the FDC are disabled. If data bit 6 is set, a Motor Time Out is enabled to generate an NMI interrupt. If data bit 6 is reset, interrupts on Motor Time Out. are disabled. An IN instruction from port E4H enables the CPU to determine the source of the non-maskable interrupt. Data bit 7 indicates the status of FDC interrupt request (INTRQ) (0 = true, 1 = false) Data bit 6 indicates the status of Motor Time Out (0 = true. 1 = false). Data bit 5 indicates the status of the Reset signal (0 = true. 1 = false) The control signal RDNMISTATUS* gates this status onto the CPU data bus when active (logic low)

Drive Select Latch and Motor ON Logic

Selecting a drive prior to disk I/O operation is accomplished by doing an OUT instruction to port F4H with the proper bit set The following table describes the bit allocation of the Drive Select Latch:

Data Bit	Function
D0	Selects Drive 0 when set*
D1	Selects Drive 1 when set*
D2	Selects Drive 2 when set*
D3	Selects Drive 3 when set*
D4	Selects Side 0 when reset
	Selects Side 1 when set
D5	Write precompensation enabled when se
	disabled when reset
D6	Generates WAIT if set
D7	Selects MFM mode if set
	Selects FM mode if reset

*Only one of these bits should be set per output

Hex D flip-flop U32 (74L174) latches the drive select bits. side select and FM'/MFM bits on the rising edge of the control signal DRVSEL* A dual D flip-flop (U98) is used to latch the Wait Enable and Write precompensation enable bits on the rising edge of DRVSEL* The rising edge of DRVSEL* also triggers a one-shot (1/2 of U54, 74LS123) which produces a Motor On to the disk drives. The duration of the Motor On signal is approximately three seconds. The spindle motors are not designed for continuous operation. Therefore, the inactive state of the Motor On signal is used to clear the Drive Select Latch, which de-selects any drives which were previously selected. The Motor On one-shot is retriggerable by simply executing another OUT instruction to the Drive Select Latch.

Wait State Generation and WAITIMOUT Logic

As previously mentioned, a wait state to the CPU can be initiated by an OUT to the Drive Select Latch with D6 set Pin 5 of U98 will go high after this operation. This signal is inverted by 1/4th of U79 and is routed to the CPU where it forces the Z80A into a wait state. The Z80A will remain in the wait state as long. as WAIT* is low. Once initiated, the WAIT* will remain low until one of five conditions is satisfied. One half of U77 (a five input NOR gate) is used to perform this function, INTQ, DRQ, RE-SET. CLRWAIT, and WAITIMOUT are the inputs to the NOR gate. If any one of these inputs is active (logic high), the output of the NOR gate (U77 pin 5) will go low. This output is tied to the clear input of the wait latch. When this signal goes low, it will clear the Q output (U98 pin 5) and set the Q* output (U98 pin 6) This condition causes WAIT* to go high which allows the Z80 to exit the wait state U99 is a 12-bit binary counter which serves as a watchdog timer to insure that a wait condition will not persist long enough to destroy dynamic RAM contents. The counter is clocked by a 1 MHz clock and is enabled to count when its reset pin is low (U99 pin 11) A logic high on U99 pin 11 resets the counter outputs. U99 pin 15 is a divide-by-1024 output and is used to generate the signal WAITIMOUT This watchdog timer logic will limit the duration of a wait to 1024µsec. even if the FDC chip should fail to generate a DRQ or an INTRQ

If an OUT to Drive Select Latch is initiated with D6 reset (logic low). a WAIT is still generated The 12-bit binary counter will count to 2 which will output CLRWAIT and clear the WAIT state This allows the WAIT to occur only during the OUT instruction to prevent violating any Dynamic RAM parameters

NOTE: This automatic WAIT will cause a 1-2 µsec wait each time an out to Drive Select Latch is performed.

Clock Generation Logic

A 4 MHz crystal oscillator and a 4-bit binary counter are used to generate the clock signals required by the FDC board. The 4 MHz oscillator is implemented with two inverters (1/3 of U39) and a quartz crystal (Y2) The output of the oscillator is inverted and buffered by 1/6 of U39 to generate a TTL level square wave signal U37 is a 4-bit binary counter which is divided into a divide-by-2 and a divide-by-8 section. The divide-by-2 section is used to generate the 2 MHz output at pin 12. The 2 MHz is NANDed with 4MHz by 1/4 of U19 and the output is used to clock the divide-by-8 section of U37 A 1 MHz clock is generated at pin 9 of U37 which is 90° phase-shifted from the 2 MHz clock This phase relationship is used to gate the guaranteed Write Data Pulse (WD) to the Write precompensation circuit The 4 MHz is used to clock the digital data separator U18 and the Write precompensation shift register U55. The 1 MHz clock is used to drive the clock input of the FDC chip (U13) and the clock input of the watchdog timer (U99)

Disk Bus Output Drivers

High current open collector drivers U20 and U56 are used to buffer the output signals from the FDC circuit to the disk drives

Write Precompensation and Write Data Pulse Shaping Logic

The Write Precompensation logic is comprised of U55 (74LS195), 1.4 of U19 (74LS00), 1.4 of U74 (74LS04), and 1/2 of U77 (74LS260) U55 is a parallel in, serial out shift register and is clocked by 4 MHz which generates a precompensation value of 250 nsec. The output signals EARLY and LATE of the FDC chip (U13) are input to P0 and P2 of the shift register A third signal is generated by 1 4 of U75 when neither EARLY nor LATE is active low and is input to P1 of U55 WD of the FDC chip is NANDed with 2 MHz to gate the guaranteed Write Data Pulse to U55 for the parallel load signal SHFT LD When U55 pin 9 is active low, the signals preset at P1-P3 are clocked in on the rising edge of the 4 MHz clock. After U55 pin 9 goes high the data is shifted out at a 250 nsec rate EARLY will generate a 250 nsec delay. NOT EARLY AND NOT LATE will generate a 500 nsec delay, and LATE will generate a 750 nsec delay. This provides the necessary precompensation for the write data. As mentioned previously. Write Precompensation is enabled through software by an OUT to the Drive Select Latch with bit 5 set. This sets the Q output of the 74LS74 (U98 pin 9) which is ANDed with DDEN which disables the shift register U55 DDEN disables Write Precompensation in the single density mode. The resulting signal also enables U75 to allow the write data (WD) to bypass the Write Precompensation circuit The Write Data (WD) pulse is shaped by a one-shot (1.2 of U54) which stretches the data pulses to approximately 500 nsec

Figure 3-18. Write Precompensation Timing

Clock and Read Data Recovery Logic

The Clock and Read Data Recovery Logic is comprised of one chip U18 (FDC9216) The FDC9216 is a Floppy Disk Data Separator (FDDS) which converts a single stream of pulses from the disk drive into separate clock and data pulses for input to the FDC chip. The FDDS consists of a clock divider, a long-term timing corrector, a short-time timing corrector and reclocking circuitry The reference clock (REFCLK) is a 4 MHz and is divided by the internal clock divider CD0 and CD1 of the FDDS chip control the divisor which divides REFCLK With DC1 grounded (logic low), CD0 (when a logic low) generates a divide-by-1 for MFM mode and when logic high generates a divide-by-2 for FM mode. CD0 is controlled by the signal DDEN* which is Double Density enable or MFM enable. The FDDS detects the leading edges of RD* pulses and adjusts the phase of the internal clock to generate the separated clock (SEPCLK) to the FDC chip. The separate long and short term timing correctors assure the clock separation to be accurate. The separated Data (SEPD*) is used as the RDD* input to the FDC chip

Floppy Disk Controller Chip

The 1793 is an MOS LSI device which performs the functions of a floppy disk formatter/controller in a single chip implementation. The following port addresses are assigned to the internal registers of the 1793 FDC chip:

Port No.	Function
FOH	Command/Status Register
F1H	Track Register
F2H	Sector Register
F3H	Data Register

3.1.16 RS-232-C Circuit

RS-232C Technical Description

The RS-232C circuit for the Model 4P computer supports asynchronous serial transmissions and conforms to the EIA RS-232C standards at the input-output interface connector (J4) The heart of the circuit is the TR1865 Asynchronous Receiver/ Transmitter U30 It performs the job of converting the parallel byte data from the CPU to a serial data stream including start, stop, and parity bits. For a more detailed description of how this LSI circuit performs these functions, refer to the TR1865 data sheets and application notes. The transmit and receive clock rates that the TR1865 needs are supplied by the Baud Rate Generator U52 (BR1941L) or (BR1943). This circuit takes the 5 0688 MHz supplied by the system timing circuit and the programmed information received from the CPU over the data bus and divides the basic clock rate to provide two clocks. The rates available from the BRG go from 50 Baud to 19200 Baud See the BRG table for the complete list

BRG Programming Table

Nibble	Transmit/ Receive Baud	16X	Supported by
Loaded	Rate	Clock	SETCOM
OH	50	0.8 kHz	Yes
1H	75	1 2 kHz	Yes
2H	110	1 76 kHz	Yes
зн	134 5	2 1523 kHz	Yes
4H	150	2 4 kHz	Yes
5H	300	4.8 kHz	Yes
6H	600	9.6 kHz	Yes
7H	1200	19.2 kHz	Yes
8H	1800	28 8 kHz	Yes
9H	2000	32 081 kHz	Yes
AH	2400	38 4 kHz	Yes
BH	3600	57 6 kHz	Yes
CH	4800	76 8 kHz	Yes
DH	7200	115 2 kHz	Yes
EH	9600	153 6 kHz	Yes
FH	19200	307 2 kHz	Yes

The RS-232C circuit is port mapped and the ports used are E8 to EB Following is a description of each port on both input and output

Port	Input	Output
E8	Modem status	Master Reset, enables UART control register load
EA	UART status	UART control register load and modem control
E9	Not Used	Baud rate register load enable bit
EB	Receiver Holding register	Transmitter Holding register

Interrupts are supported in the RS-232C circuit by the Interrupt mask register (U92) and the Status register (U44) which allow the CPU to see which kind of interrupt has occurred Interrupts an be generated on receiver data register full, transmitter register empty, and any one of the errors — parity, framing, or data overrun. This allows a minimum of CPU overhead in transferring data to or from the UART. The interrupt mask register is port EO (write) and the interrupt status register is port EO (read). Refer to the IO Port description for a full breakdown of all interrupts and their bit positions.

All Model I. III. and 4 software written for the RS-232-C interface is compatible with the Model 4P RS-232-C circuit, provided the software does not use the sense switches to configure the interface. The programmer can get around this problem by directly programming the BRG and UART for the desired configuration or by using the SETCOM command of the disk operating system to configure the interface. The TRS-80 RS-232C Interface hardware manual has a good discussion of the RS-232C standard and specific programming examples (Catalog Number 26-1145)

Pinout Listing

The following list is a pinout description of the DB-25 connector (P1).

Pin No.	Signal
1	PGND (Protective Ground)
2	TD (Transmit Data)
3	RD (Receive Data)
4	RTS (Request to Send)
5	CTS (Clear To Send)
6	DSR (Data Set Ready)
7	SGND (Signal Ground)
8	CD (Carrier Detect)
19	SRTS (Spare Request to Send)
20	DTR (Data Terminal Ready)
22	RI (Ring Indicate)

SECTION IV 4P GATE ARRAY THEORY OF OPERATION

4.2 MODEL 4P GATE ARRAY THEORY OF OPERATION

4.2.1 Introduction

Contained in the following paragraphs is a description of the component parts of the Model 4P CPU Gate Array. It is divided into the logical operational functions of the computer All components are located on the Main CPU board inside the case housing Refer to Section 3 for disassembly/assembly procedures.

4.2.2 Reset Circuit

The Model 4P reset circuit provides the neccessary reset pulses to all circuits during power up and reset operations R25 and C214 provide a time constant which holds the input of U121 low during power-up. This allows power to be stable to all circuits before the RESET* and RESET signals are applied. When C214 charges to a logic high, the output of U121 triggers the input of a retriggerable one-shot multivibrator (U1) U1 outputs a pulse with an approximate width of 70 microsecs. When the reset switch is pressed on the front panel, this discharges C214 and holds the input of U121 low until the switch is released. On release of the switch, C214 again charges up, triggering U121 and U1 to reset the microcomputer. Another signal POWRST* is generated to clear drive select circuit immediately when reset switch is pressed.

4.2.3 CPU

The central processing unit (CPU) of the Model 4P microcomputer is a Z80A microprocessor. The Z80A is capable of running in either 2 MHz or 4 MHz mode. The CPU controls all functions of the microcomputer through use of its address lines (A0-A15), data lines (D0-D7), and control lines (/M1, /IOREQ. /RD. /WR, /MREQ, and /RFSH). The address lines (A0-A15) are buffered to other ICs through two 74LS244s (U67 and U27) which are enabled all the time with their enables pulled to GND. The control lines are buffered to other ICs through a 74F04 (U87). The data lines (D0-D7) are buffered through a bi-directional 74LS245 (U86) which is enabled by BUSEN* and the direction is controlled by BUSDIR*.

4.2.4 System Timing

The main timing reference of the microcomputer, with the exception of the FDC circuit, is generated by a Gate Array U148 and a 20 2752 MHz Crystal This reference is interally divided in the Gate Array to generate all necessary timing for the CPU, video circuit, and RS-232-C circuit The CPU clock is generated U148 which can be either 2 or 4MHz depending on the logic state of FAST input (pin 6 of U148) If FAST is a logic low, the U148 generates a 2 02752 MHz clock. If FAST is a logic high, U148 generates a 4 05504 MHz signal PCLK (pin 23 of U148) is filtered through a ferrite bead (FB2) and 22Ω Resistor (R9) and then

fed to the CPU U45. PCLK is generated as a symmetrical clock and is never allowed to be short cycled (eg.) Not allowed to generate a low or high pulse under 110 nanoseconds.

4.2.4.1 Video Timing

The video timing is also generated by U148 with the help of a PLL Multiplier Module (PMM) U146 These two ICs generate all the necessary timing signals for the four video modes: 64 x 16, 32 x 16, 80 x 24, and 40 x 24. Two reference clocks are required for the four video modes. One reference clock is 10 1376 MHz. It is generated internally to U148, and is used by the 64 x 16 and 32 x 16 modes. The second reference clock is a 12 672 MHz. (12M) clock which is generated by the PMM U146 12M clock is used by the 80 x 24 and 40 x 24 modes A 1 2672 MHz (1 2M16) signal is output from pin 3 of U148 and is generated from the master reference clock, the 20 2752 MHz crystal. 1 2M16 is used for a reference clock for the PMM. The PMM is internally set to oscillate at 12 672 MHz which is output as 12M U148 divides 12M by 10 to generate a second 1 2672 MHz clock (1 2M10) which is fed into pin 5 of U146 (PMM) The two 1 2672 MHz signals are internally compared in the PMM where it corrects the 12 672 MHz output so it is synchronized with the 20.2752 MHz clock

MODSEL and 8064* signals are used to select the desired video mode 8064* controls which reference clock is used by U127 and MODSEL controls the single or double character width mode Refer to the following chart for selecting each video mode.

8064*	MODSEL	Video Mode
0	0	64 x 16
0	1	32 x 16
1	0	80 x 24
1	1	40 x 24

^{*}This is the state to be written to latch U85 Signal is inverted before being input to U148

DCLK, the reference clock selected, is output from U148 U148 generates SHIFT*, XADR7*, CRTCLK, LOADS*, and LOAD* for proper timing for the four video modes. U149 also generated H, I, and J which are fed to the Graphics Port J7 for reference timings of Hires graphics video. Refer to Video Timing, Figs 4-2 and 4-3 for timing reference.

4.2.5 Address Decode

The Address Decode section will be divided into two subsections: Memory Map decoding and Port Map decoding

4.2.5.1 Memory Map Decoding

Memory Map Decoding is accomplished by Gate Array 4 2 (U106) Four memory map modes are available which are compatible with the Model III and Model 4 microcomputers U106 is used for memory map control which also controls page mapping of the 32K RAM pages Refer to Memory Maps below

4.2.5.2 Port Map Decoding

Port Map Decoding is accomplished by Gate Array 4 2 (U106) U106 decodes the low order address (A0-A7) from the CPU and decodes the port being selected The IN' signal allows the CPU to read from a selected port and the OUT: signal allows the CPU to write to the selected port Refer to IO Port Assignment

4.2.6 ROM

The Model 4P contains only a 4K x 8 Boot ROM (U70). This ROM is used only to boot up a Disk Operating System into the RAM memory. If Model III operation or DOS is required, then the RAM from location 0000-37FFH must be loaded with an image of the Model III or 4 ROM code and then executed. A file called MODEL. A/III is supplied with the Model Pwhich contains the ROM image for proper Model III operation. On power-up, the Boot ROM is selected and mapped into location 0000-0FFFH After the Boot Sector or the ROM Image is loaded, the Boot ROM must be mapped out by OUTing to port 9CH with DO set or by selecting Memory Map modes 2 or 3. In Mode 1 the RAM is write enabled for the full 14K. This allows the RAM area mapped where Boot ROM is located to be written to while executing out of the Boot ROM. Refer to Memory Maps

The Model 4P Boot ROM contains all the code necessary to initialize hardware, detect options selected from the keyboard. read a sector from a hard disk or floppy, and load a copy of the Model III ROM Image (as mentioned) into the lower 14K of RAM

The firmware is divided into the following routines:

- Hardware Initialization
- Keyboard Scanner
- Control
- Floppy and Hard Disk Driver
- · Disk Directory Searcher
- · File Loader
- Error Handler and Displayer
- BS-232 Boot
- · Diagnostic Package

Theory of Operation

This section describes the operation of various routines in the ROM Normally. the ROM is not addressable by normal use However, there are several routines that are available through fixed calling locations and these may be used by operating systems that are booting

On a power-up or RESET condition, the Z80 s program counter is set to address 0 and the boot ROM is switched-in. The memory map of the system is set to Mode 0. (See Memory Map for details.) This will cause the Z80 to fetch instructions from the boot ROM.

The Initialization section of the Boot ROM now performs these functions:

- 1 Disables maskable and non-maskable interrupts
- 2 Interrupt mode 1 is selected
- 3 Programs the CRT Controller
- 4 Initializes the boot ROM control areas in RAM
- 5 Sets up a stack pointer
- 6 Issues a Force Interrupt to the Floppy Disk Controller to abort any current activity
- 7 Sets the system clock to 4mhz
- 8 Sets the screen to 64 x 16
- 9 Disables reverse video and the alternate character sets
- 10 Tests for < > key being pressed*
- 11 Clears all 2K of video memory
- This is a special test. If the < > is being pressed, then control is transferred to the diagnostic package in the ROM. All other keys are scanned via the Keyboard Scanner.

Figure 4-3. Video Timing 32 x 16 Mode 40 x 24 Mode

Figure 4-2. Video Timing 64 x 16 Mode 80 x 24 Mode

The Keyboard scanner is now called It scans the keyboard for a set period of time and returns several parameters based on which, if any, keys were pressed

The keyboard scanner checks for several different groups of keys. These are shown below:

Selection Group
Α
В
С
D
E
F
G

Special Keys	Misc Keys
<p></p>	<enter></enter>
<l></l>	<break></break>
a M	

When any key in the Function Group is pressed, it is recorded in RAM and will be used by the Control routine in directing the action of the boot. If more than one of these keys are pressed during the keyboard scan, the last one detected will be the one that is used. The Function group keys are currently defined as:

<f1> or <1></f1>	Will cause hard disk boot
<f2> or <2></f2>	Will cause floppy disk boot
<f3> or <3></f3>	Will force Model III mode
<left-shift></left-shift>	Reserved for future use
<right-shift></right-shift>	Boot from RS-232 port
<ctrl></ctrl>	Reserved for future use
<caps></caps>	Reserved for future use

The Special keys are commands to the Control routine which direct handling of the Model III ROM-image. Each key is detected individually.

<p></p>	When loading the Model III ROM-image, the user will be prompted when the disks can be switched or when ROM BASIC can be entered by pressing <break></break>
<n></n>	Instructs the Control routine to not load the Model III ROM- image, even if it appears that the operating system being booted requires it

<L>

Instructs the Control routine to load the Model III ROM-image even if it is already loaded This is useful if the ROM-image has been corrupted or when switching ROM-images (Note that this will not cause the ROM-image to be loaded if the boot sector check indicates that the Model III ROM image is not needed Press <F3> or <F3> and <L> to accomplish that

The Selection group keys are used in determining which file will be read from disk when the ROM-image is loaded For details of this operation, see the Disk Directory Searcher. If more than one of the Selection group keys are pressed, the last one detected will be the one that is used.

The Miscellaneous keys are:

<Break>

Pressing this key is simply recorded by setting location 405BH non-zero It is up to an operating system to use this flag if desired

<Enter>

Terminates the Keyboard routine Any other keys pressed up to that time will be acted upon <Enter> is useful for experienced users who do not want to wait until the keyboard timer expires

The Control section now takes over and follows the following flowchart

Notes:

(1) If the boot sector was not 256 bytes in length, then it is assumed to be a Model III package, and the ROM image will be needed If the sector is 256 bytes in length, then the sector is scanned for the sequence CDxx00H. The CD is the first byte of a Z80 unconditional subroutine call. The next byte can have any value. The third byte is tested against a zero. What this check does is test for any references to the first 256 bytes of memory. All Radio Shack Model III operating systems, and many other packages all reference the ROM at some point during the boot sector Most boot sectors will display a message if the system cannot be loaded. To save space, these routines use the Model III ROM calls to display the message. Several ROM calls have their entry points in the first 256 bytes of memory, and these references are detected by the boot ROM.

Packages that do not reference the Model III ROM in the boot sector can still cause the Model III ROM image to be loaded by coding a CDxx00 sumewhere in the boot sector It does not have to be executable. At the same time. Model 4 packages must take care that there is no sequence of bytes in the boot sector that could be mis-interpreted to be a reference to the Boot ROM. An example of this would be sequence 06CD0E00, which is a LD B.0CDH and a LD C.0. If the boot sector cannot be changed, then the user must press the <F3... key each time the system is started to inform the ROM that the disk contains a Model III package which needs the Model III ROM image.

- (2) If you are loading a Model 4 operating system, then the boot ROM will always transfer control to the first byte of the boot sector which is at 4300H. If you are loading a Model Ill operating system or about to use Model III ROM BASIC, then the transfer address is 3015H. This is the address of a jump vector in the 'C. ROM of the Model III ROM image and this will cause the system to behave exactly like a Model III. If the ROM image file that is loaded has a different transfer address then that address will be used when loading is complete. If the image is already present, the Boot ROM will use 3015H.
- (3) Two different tests are done to insure that the Model III ROM image is present. The first test is to check every third location starting at 3000H for a C3H. This is done for 10 locations. If any of these locations does not contain a C3H, then the ROM image is considered to be "not present. The next test is to check two bytes at location 000BH if these addresses contain E9E1H, then the ROM image is considered to be "present."
- (4) See Disk Director Searcher for more information
- (5) See File Loader for more information
- (6) The RS-232 loader is described under RS-232 Boot

Disk Directory Searcher

When the Model III ROM image is to be loaded, it is always read from the floopy in drive 0

Before the operation begins, some checks are made First, the boot sector is read in from the floppy and the first byte is checked to make sure it is either a 00H or a FEH. If the byte contains some other value, no attempt will be made to read the ROM image from that disk. The location of the directory cylinder is then taken from the boot sector and the type of disk is determined. This is done by examining the Data Address Mark that

was picked up by the Floppy Disk Controller (FDC) during the read of the sector If the DAM equals 1, the disk is a TRSDOS 1 x style disk. If the DAM equals 0, then the disk is a LDOS 5 1/ TRSDOS 6 style disk. This is important since TRSDOS 1 x disks number sectors starting with 1 and LDOS style disks number sectors starting with 0

Once the disk type has been determined. an extra test is made if the disk is a LDOS style disk. This test reads the Granule Allocation Table (GAT) to determine if the disk is single sided or double sided.

The directory is then read one record at a time and a compare is made against the pattern MODEL% for the filename and III for the extension The % means that any character will match this position if the user pressed one of the selection keys (A-G) during the keyboard scan, then that character is substituted in place of the % character. For example, if you pressed 'D', then the search would be for the file MODELD with the extension 'III'. The searching algorithm searches until it finds the entry or it reaches the end of the directory.

Once the entry has been found, the extent information for that file is copied into a control block for later use

File Loader

The file loader is actually two modules — the actual loader and a set of routines to fetch bytes from the file on disk The loader is invoked via a RST 28H. The byte fetcher is called by the loader using RST 20H. Since restart vectors can be re-directed, the same loader is used by the RS-232 boot. The difference is that the RST 20H is redirected to point to the RS-232 data receiving routine. The loader reads standard loader records and acts upon two types:

- 01 Data Load
 - 1 byte with length of block, including address
 - 1 word with address to load the data
 - n bytes of data, where n+2 equals the length specified
- 02 Transfer Address
 - 1 byte with the value of 02
 - 1 word with the address to start execution at

Any other loader code is treated as a comment block and is ignored Once an 02 record has been found, the loader stops reading, even if there is additional data, so be sure to place the 02 record at the end of the file

Floppy and Hard Disk Driver

The disk drivers are entered via RST 8H and will read a sector anywhere on a floppy disk and anywhere on head 1 (top-head) in a hard disk drive Either 256 or 512 byte sectors are readable by these routines and they make the determination of the sector size The hard disk driver is compatible with both the WD1000 and the WD1010 controllers. The floppy disk driver is written for the WD1793 controller.

Serial Loader

Invoking the serial loader is similar to forcing a boot from hard disk or floppy. In this case the right shift key must be pressed at some time during the first three seconds after reset. The program does not care if the key is pressed forever, making it convenient to connect pins 8 and 10 of the keyboard connector with a shorting plug for bench testing of boards. This assumes that the object program being loaded does not care about the key closure.

Upon entry. the program first asserts DTR (J4 pin 20) and RTS (J4 pin 4) true Next, 'Not Ready' is printed on the topmost line of the video display. Modem status line CD (J4 pin 8) is then sampled The program loops until it finds CD asserted true At that time the message "Ready" is displayed Then the program sets about determining the baud rate from the host computer

To determine the baud rate, the program compares data received by the UART to a test byte equal to '55' hex. The receiver is first set to 19200 baud if ten bytes are received which are not equal to the test byte, the baud rate is reduced. This sequence is repeated until a valid test byte is received. If ten failures occur at 50 baud, the entire process begins again at 19200 baud if a valid test byte is received, the program waits for ten more to arrive before concluding that it has determined the correct baud rate. If at this time an improper byte is received or a receiver error (overrun, framing, or parity) is intercepted, the task begins again at 19200 baud.

In order to get to this point, the host or the modem must assert CD true. The host must transmit a sequence of test bytes equal to '55' hex with 8 data bits, odd parity, and 1 or 2 stop bits. The test bytes should be separated by approximately 0.1 second to avoid overrun errors.

When the program has determined the baud rate, the message:

Found Baud Rate x

is displayed on the screen, where "x" is a letter from A to P. meaning:

A = 50 baud	E = 150	I = 1800	M = 4800
B = 75	F = 300	J = 2000	N = 7200
C = 110	G = 600	K = 2400	O = 9600
D = 1345	H = 1200	L = 3600	P = 19200

The same message less the character signifying the baud rate is transmitted to the host, with the same baud rate and protocol This message is the signal to the host to stop transmitting test bytes

After the program has transmitted the baud rate message, it reads from the UART data register in order to clear any overrun error that may have occurred due to the test bytes coming in during the transmission of the message. This is because the receiver must be made ready to receive a sync byte signalling the beginning of the command file. For this reason, it is important that the host wait until the entire baud rate message (16 characters) is received before transmitting the sync byte, which is equal to FF hex.

When the loader receives the sync byte, the message:

Loading

is displayed on the screen Again, the same message is transmitted to the host, and, again, the host must wait for the entire transmission before starting into the command file

If the receiver should intercept a receive error while waiting for the sync byte, the entire operation up to this point is aborted. The video display is cleared and the message:

Error, x

is displayed near the bottom of the screen, where $^{\circ}x^{\circ}$ is a letter from B to H, meaning:

B = parity error

C = framing error

D = parity & framing errors

E = overrun error

F = parity & overrun errors

G = framing & overrun errors

H = parity & framing & overrun errors

The message:

"Error

is then transmitted to the host. The entire process is then repeated from the "Not Ready" message. A six second delay is inserted before reinitialization. This is longer than the time required to transmit five bytes at 50 baud, so there is no need to be extra careful here.

If the sync byte is received without error, then the "Loading" message is transmitted and the program is ready to receive the command file. After receiving the "Loading" message the host can transmit the file without nulls or delays between bytes

(Since the file represents Z80 machine code and all 256 combinations are meaningful, it would be disastrous to transmit nulls or other ASCII control codes as fillers, acknowledgement, or start-stop bytes. The only control codes needed are the standard command file control bytes.)

Data can be transmitted to the loader at 19200 baud with no delays inserted. Two stop bits are recommended at high baud

See the File Loader description for more information on file loading

If a receive error should occur during file loading, the abort procedure described above will take place, so when attempting remote control, it is wise to monitor the host receiver during transmission of the file. When the host is near the object board, as is the case in the factory application, or when more than one board is being loaded, it may be advantageous or even necessary to ignore the transmitted responses of the object board(s) and to manually pace the test byte, sync byte, and command file phases of the transmission process, using the video display for handshaking

System Programmers Information

The Model 4P Boot ROM uses two areas of RAM while it is running These are 4000H to 40FFH and 4300H to 43FFH (For 512 byte boot sectors, the second area is 4300H to 44FFH) If the Model III ROM Image is loaded, additional areas are used See the technical reference manual for the system you are using for a list of these areas

Operating systems that want to support a software restart by reexecuting the contents of the boot ROM can accomplish this in one of two ways. If the operating system relies on the Model III ROM Image, then jump to location 0 as you have in the past. If the operating system is a Model 4 mode package, a simple way is to code the following instructions in your assembly and load them before you want to reset:

Absolute Location	Instruct	ion
0000	DI	
0001	LD	A,1
0003	OUT	(9CH),A

These instructions cause the boot ROM to become addressable. After executing the OUT instruction, the next instruction executed will be one in the boot ROM (These instructions also exist in the Model III ROM image at location 0) The boot ROM has been written so that the first instruction is at address 0005. The hardware must be in memory mode 0 or 1, or else the boot ROM will not be switched in. This operation can be done with an OUT instruction and then a RST 0 can be executed to have the ROM switched in.

Restarts can be redirected at any time while the ROM is switched in .All restarts jump to fixed locations in RAM and these areas may be changed to point to the routine that is to be executed

Restart	RAM Location	Default Use
0	none	Cold Start/Boot
8	4000H	Disk I/O Request
10	4003H	Display string
18	4006H	Display block
20	4009H	Byte Fetch (Called by Loader)
28	400CH	File Loader
30	400FH	Keyboard scanner
38	4012H	Reserved for future use
66	4015H	NMI (Floppy I/O Command Complete)

The above routines have fixed entry parameters
These are described here

Disk I/O Request (RST 8H)

8

9

11

12

Accepts			
Α	1 for floppy, 2 for hard disk		
В	Command		
	Initialize 1		
	Restore 4		
	Seek 6		
	Read 12 (All reads have an im-		
	plied seek)		
С	Sector number to read		
	The contents of the location disktype		
	(405CH) are added to this value before		
	an actual read. If the disk is a two sided		
	floppy, just add 18 to the sector number		
DE	Cylinder number (Only E is used in		
	floppy operations)		
HL	Address where data from a read opera-		
	tion is to be stored		
Returns			
Z	Suggest Operation Committed		
NZ	Success, Operation Completed Error, Error code in A		
INZ	Error, Error code in A		
Error Codes			
3	Hard Disk drive is not ready		
4	Floppy disk drive is not ready		
5	Hard Disk drive is not available		
6	Floppy disk drive is not available		
7	Drive Not Ready and no Index (Disk in		
	drive, door open)		

CRC Error

Seek Error

Lost Data

ID Not Found

Display String (RST 10H)

Accepts	
HL	Pointer to text to be displayed
	Text must be terminated with a null (0)
DE	Offset position on screen where text is to
	be displayed
	(A 0000H will be the upper left-hand cor-
	ner of the display)
Returns	
Success Always	
Α	Altered
DE	Points to next position on video
HL	Points to the null (0)

Display Block (R	ST 18H)		
Accepts			
HL	Points + 0 + 2 null	S to control vector in Screen Offset Pointer to text.	in the format: terminated with
	+ 4 null	Pointer to text.	terminated with
	+ n	word FFFFH	End of control vector
or	+ n	word FFFEH	Next word is new Screen Offset
If Z flag is set on e DE instead of from	ntry, ther the cont	n the first screen o rol vector	
Each string is pos FFFEH entry is for duce duplication of	und This	is used heavily in	string, unless a the ROM to re-
Returns Success Always			
DE	Points	to next position or	n video
Byte Fetch (RST 20H)			
Accepts None Returns			
Z	Succe	ss, byte in A	
NZ	Failure	, error code in A	
Errors			
2		rors from the disk	

ROM Image can't be loaded - Too many

ROM Image can't be loaded -- Disk drive

2

10

extents

is not ready

File Loader (RST 28H)

Accepts None

Returns

Z Success

NZ Failure error code in A

Errors

Any errors from the disk I/O call or the

byte fetch call and:

0 The ROM image was not found on drive 0

There are several pieces of information left in memory by the boot ROM which are useful to system programmers. These are shown below:

Description		
ROM Image Selected (% for none		
selected or A-G)		
Boot type		
1 – Floppy		
2 = Hard disk		
3 = ARCNET		
4 = RS-232C		
5 - 7 = Reserved		
Boot Sector Size (1 for 256, 2 for 512)		
RS-232 Baud Rate (only valid on RS-		
232 boot)		
Function Key Selected		
0 = No function key selected		
<f1> or <1></f1>	86	
<f2> or <2></f2>	87	
<f3> or <3></f3>	88	
<caps></caps>	85	
<ctrl></ctrl>	84	
<left-shift></left-shift>	82	
<right-shift></right-shift>	83	
Reserved	80-81 and 89-90	
Break Key Indication (non-zero if		
<break> pressed)</break>		
Disk type	(0 for LDOS/	
**	TRSDOS 6,1 for	
	TRSDOS 1 x)	
	ROM Image Selecte selected or A-G) Boot type 1 - Floppy 2 = Hard disk 3 = ARCNET 4 = RS-232C 5 - 7 = Reserved Boot Sector Size (1 RS-232 Baud Rate (232 boot) Function Key Select 0 = No function key <f1> or <1> <f2> or <2> <f3> or <3> <ctrl> <ctrl> <injunction 0="No" <f1="" function="" key="" select=""> or <1> <f2> or <1> <f3> or <3> <ctrl> <ctrl> <ctrl> <left-shift> <right-shift> Reserved Break Key Indication <break> pressed)</break></right-shift></left-shift></ctrl></ctrl></ctrl></f3></f2></injunction></ctrl></ctrl></f3></f2></f1>	

Keep in mind that Model III ROM image will initialize these areas, so this information is useful only to the Model 4 mode programmer

4.2.7 RAM

Two configurations of Random Access Memory (RAM) are available on the Model 4P: 64K and 128K. The 64K and 128K option use the 6665-type 64K x 1 200NS Dynamic RAM, which requires only a single +5v supply voltage

The DRAMs require multiplexed incoming address lines This is accomplished by ICs U110 and U111 which are 74LS157 multiplexers. Data to and from the DRAMs are buffered by a 74LS245 (U118) which is controlled by Gate Array 4 2 (U106) The proper timing signals RASO* RAS1* MUX* and CAS* are generated by a delay line circuit U94. U116 (1/2 of a 74S112) and U117 (1/4 of a 74F08) are used to generate a precharge circuit During M1 cycles of the Z80A in 4 MHz mode, the high time in MREQ has a minimum time of 110 nanosecs. The specification of 6665 DRAM requires a minimum of 120 nanosecs so this circuit will shorten the MREQ signal during the M1 cycle The resulting signal PMREQ is used to start a RAM memory cycle through U114 (a 74S64) Each different cycle is controlled at U114 to maintain a fast M1 cycle so no wait states are required The output of U114 (PRAS*) is ANDed with RFSH to not allow MUX* and CAS* to be generated during a REFRESH cycle PRAS* also generates either RAS0* or RAS1* depending on which bank of RAM the CPU is selecting GCAS* generated by the delay line U94 is latched by U116 (1/2 of a 74S112) and held to the end of the memory cycle. The output of U116 is ANDed with VIDEO signal to disable the CAS* signal from occurring if the cycle is a video memory access. Refer to M1 Cycle Timing (Figure 4-7 and 4-8), Memory Read and Memory Write Cycle Timing (Figure 4-9) and (Figure 4-10)

Hardware 117

RAM 16K

MODE 1

MODE 1

	SELØ = SEL = SEL = ROM = ROM =
LEVEL	5V ØV 5V
STATE	ロタロ

SELØ = SELl = ROM =

LEVEL

STATE

5V ØV ØV

H **20** H

Hardware 119

Hardware 120

Figure 4-8. M1 Cycle Timing (4MHZ)

Figure 4-9. Memory Read Cycle Timing

Figure 4-10. Memory Write Cycle Timing

Memory Map --- Model 4P

Mode 0	SEL0 = 0 = 0V SEL1 = 0 = 0V ROM = 1 = 0V		Mode 1	SEL0 = 1 = +5V SEL1 = 0 = 0V ROM = 0 = +5V	
0000 — 0FFF 1000 — 37FF 37E8 — 37E9 3800 — 3BFF 3C00 — 3FFF 4000 — FFFF	Boot ROM RAM (Read Only) Printer Status (Read Only) Keyboard Video RAM	4K 10K 2 1K 1K 48K	0000 — 37FF 3800 — 3BFF 3C00 — 3FFF 4000 — FFFF	RAM Keyboard Video RAM	14K 1K 1K 48K
Mode 0	SEL0 = 0 = 0V SEL1 = 0 = 0V	.5.1	Mode 2	SEL0 = 0 = 0V SEL1 = 1 = +5V ROM = X = Don t Care	
0000 — 37FF	ROM = 0 = +5V RAM (Read Only)	14K	0000 — F3FF F400 — F7FF F800 — FFFF	RAM Keyboard Video	61K 1K 2K
37E8 — 37E9 3800 — 3BFF	Printer Status (Read Only) Keyboard	2 1K			La 7 V
3000 — 3FFF 4000 — FFFF	video RAM	1K 48K	Mode 3	SEL0 = 1 = +5v SEL1 = 1 = +5V ROM = X = Don't Care	
Mode 1	SEL0 = 1 = +5V SEL1 = 0 = 0V ROM = 1 = 0V		0000 — FFFF	RAM	64K
0000 — 0FFF 0000 — 0FFF 1000 — 37FF 3800 — 3BFF 3C00 — 3FFF 4000 — FFFF	Boot ROM RAM (Write Only) RAM Keyboard Video RAM	4K 4K 10K 1K 1K 48K			

I/O Port Assignment

	Normally	•	
Port #	Used	Out	In
FC — FF	FF	CASSOUT .	MODIN .
F8 FB	F8	LPOUT *	LPIN *
F4 — F7	F4	DRVSEL*	(RESERVED)
F0 F3	-	DISKOUT .	DISKIN *
FO	F0	FDC COMMAND REG	FDC STATUS REG
F1	F1	FDC TRACK REG	FDC TRACK REG
F2	F2	FDC SECTOR REG.	FDC SECTOR REG
F3	F3	FDC DATA REG	FDC DATA REG
EC — EF	EC	MODOUT .	RTCIN '
E8 — EB	-	RS232OUT *	RS232IN *
E8	E8	UART MASTER RESET	MODEM STATUS
E9	E9	BAUD RATE GEN REG	(RESERVED)
EA	EA	UART CONTROL AND	JART STATUS REG
		MODEM CONTROL REG	
EB	EB	UART TRANSMIT	UART HOLDING REG
		HOLDING REG	(RESET D R)
E4 — E7	E4	WR NMI MASK REG .	HD NMI STATUS *
E0 E3	E0	WR INT MASK REG *	RD INT MASK REG .
A0 DF		(RESERVED)	(RESERVED)
9C — 9F	9C	BOOT .	(RESERVED)
94 — 9B	-	(RESERVED)	(RESERVED)
90 — 93	90	SEN.	(RESERVED)
8C 8F	-	GSEL0 ·	GSEL0 .
88 — 8B	***	CRTCCS *	(RESERVED)
88, 8A	88	CRCT ADD REG	(RESERVED)
89, 8B	89	CRCT DATA REG	(RESERVED)
84 — 87	84	OPREG *	(RESERVED)
80 — 83	_	GSEL1 .	GSEL1 ·

I/O Port Description

Name: CASSOUT *
Port Address: FC — FF

Access: WRITE ONLY

Description: Output data to cassette or for sound

generation

Note: The Model 4P does not support cassette storage.

this port is only used to generate sound that was to be output via cassette port. The Model 4P sends

data to onboard sound circuit

D0 = Cassette output level (sound data output)

D1 = Reserved

D2 - D7 = Undefined

Name: MODIN * (CASSIN *)

Port Address: FC — FF
Access: READ ONLY
Description: Configuration Status

D0 = 0

D1 = CASSMOTORON STATUS

D2 = MODSEL STATUS

D3 = ENALTSET STATUS

D4 = ENEXTIO STATUS

D5 = (NOT USED)

D6 = FAST STATUS

D7 = 0

Name: LPOUT '
Port Address: F8 — FB
Access: WRITE ONLY

Description: Output data to line printer

D0 - D7 = ASCII BYTE TO BE PRINTED

Name: LPIN *
Port Address: F8 — FB

Access: READ ONLY

Description: Input line printer status

D0 - D3 = (RESERVED)

D4 = FAULT 1 = TRUE 0 = FALSE

D5 = UNIT SELECT 1 = TRUE

0 = FALSE

D6 = OUTPAPER 1 = TRUE

0 = FALSE

D7 = BUSY

1 = TRUE 0 = FALSE

Name: DRVSEL *
Port Address: F4 — F7
Access: WRITE ONLY

Description: Output FDC Configuration

Note: Output to this port will ALWAYS cause a 1-2 mscc (Microsecond) wait to the Z80

D0 = DRIVE SELECT 0

D1 = DRIVE SELECT 1

D2 = (RESERVED)

D3 = (RESERVED)

D4 = SDSEL 0 = SIDE 0

1 = SIDE 1

D5 = PRECOMPEN

0 = No write precompensation1 = Write Precompensation enabled

t = Write Precompensation enabled

D6 = WSGEN

0 = No wait state generated 1 = wait state generated

Note: This wait state is to sync Z80 with FDC chip during FDC operation

D7 = DDEN •

0 = Single Density enabled (FM) 1 = Double Density enabled (MFM) Name: DISKOUT D4 = ENEXTIO

Port Address:F30 = External IO Bus disabledAccess:WRITE ONLY1 = External IO Bus enabled

Description: Output to FDC Control Registers

D5 = (RESERVED)
Port F0 = FDC Command Register

D6 = FAST

 Port F1 = FDC Track Register
 0 = 2 MHZ Mode

 1 = 4 MHZ Mode

 Port F2 = FDC Sector Register

D7 = (RESERVED)

Port F3 = FDC Data Register

(Refer to FDC Manual for Bit Assignments)

Name: RTCIN *

Port Address: EC — EF

Access: READ ONLY

Name: DISKIN * Description: Clear Real Time Clock Interrupt

 Port Address:
 F0 — F3

 Access:
 READ ONLY

 D0 — D7
 = DON'T CARE

Description: Input FDC Control Registers

Port F0 = FDC Status Register

Name: RS232OUT *

Port Address: E8 — EB

Port F1 = FDC Track Register

Access: WRITE ONLY

Description: UART Control, Modem Control,

Port F2 = FDC Sector Register BRG Control

Port F3 = FDC Data Register Port E8 = UART Master Reset

(Refer to FDC Manual for Bit Assignment) Port E9 = BAUD Rate Gen Register

Port EA = UART Control Register (Modern Control Reg)

Name: MODOUT

 Name:
 MODOUT *

 Port Address:
 EC — EF
 Port EB = UART Transmit Holding Reg

 Access:
 WRITE ONLY

Description: Output to Configuration Latch (Refer to Model III or 4 Manual for Bit Assignments)

D0 = (RESERVED)

 D1
 = CASSMOTORON (Sound enable)
 Name:
 RS232IN *

 Port Address:
 E8 — EB

0 = Cassette Motor Off (Sound enabled) Access: READ ONLY

1 = Cassette Motor On (Sound disabled) Description: Input UART and Modern Status

D2 = MODSEL Port E8 = MODEM STATUS

0 = 64 or 80 character mode 1 = 32 or 40 character mode Port E9 = (RESERVED)

D3 = ENALTSET Port EA = UART Status Register

0 = Alternate character set disabled

1 = Alternate character set enabled Port EB = UART Receive Holding Register (Resets DR)

(Refer to Model III or 4 Manual for Bit Assignments)

Name: WRNMIMASKREG *

Port Address: E4 — E7
Access: WRITE ONLY
Description: Output NMI Latch

D0 - D5 = (RESERVED)

D6 = ENMOTOROFFINT

0 = Disables Motoroff NMI 1 = Enables Motoroff NMI

D7 = ENINTRQ

0 = Disables INTRQ NMI 1 = Enables INTRQ NMI

Name: RDNMISTATUS *
Port Address: E4 — E7
Access: READ ONLY
Description: Input NMI Status

D0 = 0

D2 - D4 = (RESERVED)

D5 = RESET (not needed)

0 = Reset Asserted (Problem)

1 = Reset Negated

D6 = MOTOROFF

0 = Motoroff Asserted 1 = Motoroff Negated

D7 = INTRQ

0 = INTRQ Asserted 1 = INTRQ Negated

Name: WRINTMASKREG *

Port Address: E0 — E3
Access: WRITE ONLY
Description: Output INT Latch

D0 - D1 = (RESERVED)

D2 = ENRTC

0 = Real time clock interrupt disabled
 1 = Real time clock interrupt enabled

D3 = ENIOBUSINT

0 = External IO Bus interrupt disabled1 = External IO Bus interrupt enabled

D4 = ENXMITINT

0 = RS232 Xmit Holding Reg empty int disabled

1 = RS232 Xmit Holding Reg empty int

enabled

D5 = ENRECINT

0 = RS232 Rec Data Reg full int disabled 1 = RS232 Rec Data Reg full int enabled

D6 = ENERRORINT

0 = RS232 UART Error interrupts disabled 1 = RS232 UART Error interrupts enabled

D7 = (RESERVED)

Name: RDINTSTATUS *
Port Address: E0 — E3
Access: READ ONLY
Description: Input INT Status

D0 - D1 = (RESERVED)

D2 = RTC INT

D3 = IOBUS INT

D4 = HS232 XMIT INT

D5 = RS232 REC INT

D6 = RS232 UART ERROR INT

D7 = (RESERVED)

Name: BOOT ·
Port Address: 9C — 9F

Access: WRITE ONLY

Description: Enable or Disable Boot ROM

D0 = ROM *

0 = Boot ROM Disabled 1 = Boot ROM Enabled

D1 - D7 = (RESERVED)

Name: SEN *
Port Address: 90 — 93
Access: WRITE ONLY
Description: Sound output

D0 = SOUND DATA

D1 - D7 = (RESERVED)

Name: OPREG *

Port Address: 84

Access: WRITE ONLY

Description: Output to operation reg

D0 = SEL0

D1 = SEL1

SEL1	SEL0	MODE
0	0	0
0	1	1
1	0	2
1	1	3

D2 = 8064

0 = 64 character mode 1 = 80 character mode

D3 = INVERSE

0 = Inverse video disabled1 = Inverse video enabled

D4 = SRCPAGE — Points to the page to be mapped

as new page

0 = U64K, L32K Page 1 = U64K, U32K Page

D5 = ENPAGE — Enables mapping of new page

0 = Page mapping disabled1 = Page mapping enabled

D6 = DESPAGE — Points to the page where new

page is to be mapped;

0 = L64K, U32K Page 1 = L64K, L32K Page

D7 = PAGE

0 = Page 0 of Video Memory 1 = Page 1 of Video Memory

4.2.8 Video Circuit

The heart of the video display circuit in the Model 4P is the 68045 Cathode Ray Tube Controller (CRTC). U42 The CRTC is a preprogrammed video controller that provides two screen formats: 64 by 16 and 80 by 24. The format is controlled by pin 3 of the CRTC (8064*). The CRTC generates all of the necessary signals required for the video display. These signals are VSYNC (Vertical Sync), HSYNC (Horizontal Sync) for proper sync of the monitor, DISPEN (Display Enable) which indicates when video data should be output to the monitor, the refresh memory addresses (MA0-MA13) which addresses the video RAM, and the row addresses (RA0-RA4) which indicates which scan line row is being displayed. The CRTC also provides hardware scrolling by writing to the internal Memory Start Address Register by OUTing to Port 88H. The internal cursor control of the 68045 is not used in the Model 4P video circuit.

Since the 80 by 24 screen requires 1,920 screen memory locations, a 2K by 8 static RAM (U82) is used for the video RAM Addressing to the video RAM (U82) is provided by the 68045 when refreshing the screen and by the CPU when updating of the data is performed. These two sets of address lines are multiplexed by three 74LS157s (U41, U61, and U81) The multiplexers are switched by CRTCLK which allows the CRTC to address the video RAM during the high state of CRTCLK and the CPU access during the low state A10 from the CPU is controlled by PAGE* which allows two display pages in the 64 by 16 format. When updates to the video RAM are performed by the CPU, the CPU is held in a WAIT state until the CRTC is not addressing the video RAM. This operation allows reads and writes to video RAM without causing hashing on the screen The circuit that performs this function is a 74LS244 buffer (U84), an 8 bit transparent latch, 74LS373 (U83) and a Delay line circuit shared with Dynamic RAM timing circuit consisting of a 74LS74 (U98), 74LS32 (U96), 74LS04 (U95), 74LS00 (U92), 74LS02 (U69), and Delay Line (U94). During a CPU Read Access to the Video RAM, the address is decoded by the GA 4 2 and asserts VIDEO* low This is inverted by U95 (1 6 of 74LS04) which pulls one input of U92 (1/4 of 74LS00) and in turn asserts VWAIT * low to the CPU RD is high at this time and is latched into U98 (1/2 of 74LS74) on the rising edge of XADR7* inverse of CRTCLK

When RD is latched by U98, the Q output goes low releasing WAIT* from the CPU The same signal also is sent to the Delay Line (U94) through U117 (1/4 of 74F08) The Delay line delays the falling edge 240 ns for VLATCH* which latches the read data from the video RAM at U83. The data is latched so the CRTC can refresh the next address location and prevent any hashing MRD* decoded by U106 and a memory read is ORed with VIDEO* which enables the data from U83 to the data bus The CPU then reads the data and completes the cycle A CPU write is slightly more complex in operation. As in the RD cycle, VIDEO* is asserted low which asserts VWAIT* low to the CPU WR is high at this time which is NANDed with VIDEO and synced with CRTCLK to create VRAMDIS that disables the video RAM output On the rising edge of XADR7*, WR is latched into U98 (1/2 of 74LS74) which releases VWAIT* and starts cycle through the Delay Line After 30ns DLYVWR* (Delayed video write) is asserted low which also asserts VBUFEN* (Video Buffer Enable) low VBUFEN' enabled data from the Data bus to the video RAM Approximately 120ns later DLYVWR* is negated high which writes the data to the video RAM and negates VBUFEN* turning off buffer The CPU then completes WR cycle to the video RAM Refer to Video RAM CPU Access Timing Figure 5-12 for timing of above RD or WR cycles

During screen refresh, CRTCLK is high allowing the CRTC to address Video RAM. The data out of the video RAM is latched by LOAD* into Gale Array 4.3 (U102) INVERSE* determines if character should be alpha-numeric only (INVERSE* high) or unchanged (INVERSE* low). A9 is decoded with ENALTSET (Enable Alternate Set) and 7, which controls the alternate set in the character generator ROM See ENALTSET Control Table below.

ENALTSET	Q7	Q6	A9
0	0	0	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

RA0-RA3, row addresses from the CRTC are used to control which scan line is being displayed. The Model 4P has a 4-bit full adder 74LS283 (U101) to modify the Row address. During a character display DLYGRAPHIC* is high which applies a high to all 4 bits to be added to row address. This will result in subtracting one from Row address count and allow all characters to be displayed one scan line lower. The purpose is so inverse characters will appear within the inverse block. When a graphic block is displayed DLYGRAPHIC* is low which causes the row address to be unmodified. Moving jumper from E14-E15 to E15-E16 will disable this circuit.

DLYCHAR* and DLYGRAPHICS are inverse signals and control which data is to be loaded into the internal shift register of U102 When DLYCHAR* is low and DLYGRAPHIC* is high, the Character Generator ROM (U103) is enabled to output data When DLYCHAR* is high and DLYGRAPHIC* is low the graphics characters are internally buffered to the shift register. The data is loaded into the internal shift register on the rising edge of SHIFT* when LOADS* is low Serial video data is output U102 19. The video information is inverted by U142 and F83, is filtered by R14 (47 ohm resistor), and C227 (100 pf Cap) and output to video monitor. VSYNC and HSYNC are buffered by (1/2 of 74LS86) U143 and are also output to video monitor. Refer to Video Circuit Timing Figure 4-12 and Inverse Video Timing Figure 4-13 for timing relationships of Video Circuit

4.2.9 Keyboard

The keyboard interface of the Model 4P consists of open collector drivers which drive an 8 by 8 key matrix keyboard and an inverting buffer which buffers the key or keys pressed on the data bus The open collector drivers (U57 and U77 (7416) are driven by address lines A0-A7 which drive the column lines of the keyboard matrix. The ROW lines of the keyboard are pulled up by a 1 5 kohm resistor pack RP2. The ROW lines are buffered and inverted onto the data bus by U78 (74LS240) which is enabled when KEYBD* is a logic low. KEYBD* is a memory mapped decode of addresses 3800-3BFF in Model III Mode and F400-F7FF in Model 4/4P mode Refer to the Memory Map under Address Decode for more information. During real time operation, the CPU will scan the keyboard periodically to check if any keys are pressed. If no key is pressed, the resistor pack RP2 keeps the inputs of U78 at a logic high U78 inverts the data to a logic low and buffers it to the data bus which is read by the CPU If a key is pressed when the CPU scans the correct column line, the key pressed will pull the corresponding row to a logic low. U78 inverts the signal to a logic high which is read by the CPU

4.2.10 Real Time Clock

The Real Time Clock circuit in the Model 4P provides a 30 Hz (in the 2 MHz CPU mode) or 60 Hz (in the 4 MHz CPU mode) interrupt to the CPU By counting the number of interrupts that have occurred, the CPU can keep track of the time. The 60 Hz vertical sync signal (VSYNC) from the video circuitry is used for the Real Time Clock's reference. In the 2 MHz mode, FAST is a logic low which sets the Preset input, pin 4 of U23 (74LS74). to a logic high. This allows the 60 Hz (VSYNC) to be divided by 2 to 30 Hz The output of 1/2 of U23 is ORed with the original 60 Hz and then clocks another 74LS74 (1/2 of U23) If the real time clock is enabled (ENRTC at a logic high), the interrupt is latched and pulls the INT* line low to the CPU. When the CPU recognizes the interrupt, the pulse is counted and the latch reset by pulling RTCIN* low In the 4 MHz mode, FAST is a logic high which keeps the first half of U23 in a preset state (the Q* output at a logic low) The 60 Hz is used to clock the interrupts

NOTE: If interrupts are disabled, the accuracy of the real time clock will suffer

4.2.11 Line Printer Port

The Line Printer Port Interface consists of a pulse generator, an eight-bit latch, and a status line buffer. The status of the line printer is read by the CPU by enabling buffer U3 (74LS244). This buffer is enabled by LPRD' which is a memory map and port map decode. In Model III mode, only the status can be read from memory location 37E8 or 37E9. The status can be read in all modes by an input from ports F8-F8. For a listing of the bit status, refer to Port Map section.

After the printer driver software determines that the printer is ready for printing (by reading the correct status), the characters to be printed are output to Port F8-FB U2, a 74LS374 eight-bit atch, latches the character byte and outputs to the line printer One-half of U1 (74LS123), a one-shot, is then triggered which generates an appropriate strobe signal to the printer which signifies a valid character is ready The output of the one-shot is buffered by 1/6th of the U51 (74LS04) to prevent noise from the printer cable from false-triggering the one-shot

Hardware 133

Figure 4-13. Video Blanking Timing

Figure 4-14. Inverse Video Timing

4,2.12 Graphics Port

The Graphics Port (J7) on the Model 4P is provided to attach the optional Graphics Board The port provides D0-D7 (Data Lines), A0-A3 (Address Lines), IN* GEN* and RESET* for the necessary interface signals for the Graphics Board GEN* is generated by negative ORing Port selects GSEL0* (8C-8FH) and GSELI* (80-83H) together by (1/4 of 74LS08) U4 The resulting signal is negative ANDed with IORQ* by (1/4 of 74S32) U24 Seven timing signals are provided to allow synchronization of Main Logic Board Video and Graphics Board Video These timing signals are VSYNC, HSYNC, DISPEN, DCLK, H. I. and J. Three control signals from the Graphics Board are used to sync to CPU access and select different video modes. WAIT* controls the CPU access by causing the CPU to WAIT till video is in retrace area before allowing any writes or reads to Graphics Board RAM. ENGRAF is asserted when Graphics video is displayed ENGRAF also disables inverse video mode on Main Logic Board Video CL166* (Clear 74L166) is used to enable or disable mixing of Main Logic Board Video and Graphics Board Video If CL166* is negated high, then mixing is allowed in all four video modes 80 x 24, 40 x 24, 64 x 16, and 32 x 16. If CL166* is asserted low, this will clear the video shift register U63, which allows no video from the Main Logic Board In this state 8064* is automatically asserted low to put screen in 80 x 24 video mode. Refer to Figure 4-15 Graphic Board Video Timing for timing relationships. Refer to the Model 4/ 4P Graphics Board Service information for service or technical information on the Graphics Board

4.2.13 Sound

The sound circuit in the Model 4P is compatible with the Sound Board which was optional in the Model 4 Sound is generated by alternately setting and clearing data bit D0 during an OUT to port 90H. The state of D0 is latched by U129 (1/2 of a 74LS74) and the output is amplified by Q2 which drives a 8\Omega\$1 speaker. The speed of the software loop determines the frequency, and thus, the pitch of the resulting tone. Since the Model 4P does not have a cassette circuit, some existing software that used the cassette output for sound would have been lost. The Model 4P routes the cassette latch to the sound board through U109 When the CASSMOTORON signal is a logic low, the cassette motor is off, then the cassette output is sent to the sound circuit.

4.2.14 I/O Bus Port

The Model 4P Bus is designed to allow easy and convenient interfacing of $I\!\!IO$ devices to the Model 4P The $I\!\!I\!\!IO$ Bus supports all the signals necessary to implement a device compatible with the Z80s $I\!\!IO$ structure

Addresses:

A0 to A7 allow selection of up to 256* input and 256 output devices if external I/O is enabled

*Ports 80H to 0FFH are reserved for System use

Data

DB0 to DB7 allow transfer of 8-bit data onto the processor data bus is external I/O is enabled

Control Lines:

- 1 M1* Z80A signal specifying an M1 or Operation Code Fetch Cycle or with IOREQ*, it specifies an Interrupt acknowledge
- 2 IN* Z80A signal specifying than an input is in progress Logic AND of IOREQ* and WR*
- 3 OUT* Z80A signal specifying that an output is in progress Logic AND of IOREQ* and WR*
- 4 IOREQ* Z80A signal specifying that an input or output is in progress or with M1*, it specifies an interrupt acknowledge
- 5 RESET* system reset signal
- 6 IOBUSINT* input to the CPU signaling an interrupt from an I/O Bus device if I/O Bus interrupts are enabled
- 7 IOBUSWAIT* input to the CPU wait line allowing I/O Bus device to force wait states on the Z80 if external I/O is enabled
- 8 EXTIOSEL* input to I/O Bus Port circuit which switches the I/O Bus data bus transceiver and allows and INPUT instruction to read I/O Bus data

The address line, data line, and all control lines except RESET* are enabled only when the ENEXIO bit in port EC is set to one

To enable I/O interrupts, the ENIOBUSINT bit in the PORT E0 (output port) must be a one. However, even if it is disabled from generating interrupts, the status of the IOBUSINT* line can still read on the appropriate bit of CPU IOPORT E0 (input port).

See Model 4P Port Bit assignments for port 0FF, 0EC, and 0E0 $\,$

Figure 4-15. Graphic Board Video Timing

The Model 4P CPU board is fully protected from "foreign I/O devices" in that all the I/O Bus signals are buffered and can be disabled under software control. To attach and use and I/O device on the I/O Bus, certain requirements (both hardware and software) must be met.

For input port device use, you must enable external I/O devices by writing to port 0ECH with bit 4 on in the user software. This will enable the data bus address lines and control signals to the I/O Bus edge connector. When the input device is selected, the hardware should acknowledge by asserting EXTIOSEL* low. This switches the data bus transceiver and allows the CPU to read the contents of the I/O Bus data lines. See Figure 4-16 for the timing. EXTIOSEL* can be generated by NANDing IN and the I/O port address.

Output port device use is the same as the input port device in use, in that the external I/O devices must be enabled by writing to port OECH with bit 4 on in the user software — in the same fashion

For either input or output devices, the IOBUSWAIT* control line can be used in the normal way for synchronizing slow devices to the CPU. Note that since dynamic memories are used in the Model 4P, the wait line should be used with caution. Holding the CPU in a wait state for 2 msec or more may cause loss of memory contents since refresh is inhibited during this time. It is recommended that the IOBUSWAIT* line be held active no more than 500 µsec with a 25% duty cycle.

The Model 4P will support Z80 Mode 1 interrupts A RAM jump table is supported by the LEVEL II BASIC ROMs image and the user must supply the address of his interrupt service routine by writing this address to locations 403E and 403F When an interrupt occurs, the program will be vectored to the user-supplied address if I/O Bus interrupts have been enabled To enable I/O Bus interrupts, the user must set bit 3 of Port 0E0H

4.2.15 FDC Circuit

The TRS-80 Model 4P Floppy Disk Interface provices a standard 5-1/4" floppy disk controller The Floppy Disk Interface supports both single and double density encoding schemes Write precompensation can be software enabled or disabled beginning at any track, although the system software enables write precompensation for all tracks greater than twenty-one The amount of write precompensation is 125 nsec and is not adjustable One or two drives may be controlled by the interface. All data transfers are accomplished by CPU data requests. In double density operation, data transfers are synchronized to the CPU by forcing a wait to the CPU and clearing the wait by a data request from the FDC chip. The end of the data transfer is indicated by generation of a non-maskable interrupt from the interrupt request output of the FDC chip A hardware watchdog timer insures that any error condition will not hang the wait line to the CPU for a period long enough to destroy RAM contents

"Inserted by Z80 CPU

Input or Output Cycles with Wait States

"Inserted by Z80 CPU

†Coincident with IORQ* only on INPUT cycle

Figure 4-16. I/O Bus Timing Diagram

Control and Data Buffering

The Floppy Disk Controller Board is an I/O port-mapped device which utilizes ports E4H, F0H, F1H, F2H, F3H, and F4H. The decoding logic is implemented on the CPU board (Refer to Paragraph 5 1 5 Address Decoding for more information on Port Map) U70 is a bi-directional, 8-bit transceiver used to buffer data to and from the FDC and RS-232 circuits. The direction of data transfer is controlled by the combination of control signals DISKIN*, RS232IN*, RDINT*, and RDNMI* If any of these signals is active (logic low), U70 is enabled to drive data onto the CPU data bus. If both signals are inactive (logic high), U70 is enabled to receive data from the CPU board data bus. A second buffer (U36) is used to buffer the FDC chip data to the FDC/ RS232 Data Bus, (BD0-BD7), U36 is enabled all the time and its direction controlled by DISKIN* Again, if DISKIN* is active (logic low), data is enabled to drive from the FDC chip to the Main Data Busses If DISKIN* is inactive (logic high), data is enabled to be transferred to the FDC chip

Nonmaskable Interrupt Logic

Gate Array 4 4 (U18) is used to latch data bits D6 and D7 on the rising edge of the control signal WRNMI* This enables the conditions which will generate a non-maskable interrupt to the CPU The NMI interrupt conditions which are programmed by doing an OUT instruction to port E4H with the appropriate bits set. If data bit 7 is set, an FDC interrupt is enabled to generate an NMI interrupt. If data bit 7 is reset, interrupt requests request from the FDC are disabled. If data bit 6 is set, a Motor Time Out is enabled to generate an NMI interrupt. If data bit 6 is reset, interrupts on Motor Time Out are disabled An IN instruction from port E4H enables the CPU to determine the source of the nonmaskable interrupt Data bit 7 indicates the status of FDC interrupt request (INTRQ) (0 = true, 1 = false) Data bit 6 indicates the status of Motor Time Out (0 = true, 1 = false) Data bit 5 indicates the status of the Reset signal (0 = true, 1 = false) The control signal RDNMI* gates this status onto the CPU data bus when active (logic low)

Drive Select Latch and Motor ON Logic

Selecting a drive prior to disk I/O operation is accomplished by doing an OUT instruction to port F4H with the proper bit set. The following table describes the bit allocation of the Drive Select Latch:

Data Bit	Function
D0	Selects Drive 0 when set*
D1	Selects Drive 1 when set*
D2	Selects Drive 2 when set*
D3	Selects Drive 3 when set*
D4	Selects Side 0 when reset
	Selects Side 1 when set
D5	Write precompensation enabled when set,
	disabled when reset
D6	Generates WAIT if set
D7	Selects MFM mode if set
	Selects FM mode if reset

*Only one of these bits should be set per output

Hex D flip-flop U54 (74L174) latches the drive select bits, side select and FM*MFM bits on the rising edge of the control signal DRVSEL* Gate Array 4 4 (U18) is used to latch the Wait Enable and Write precompensation enable bits on the rising edge of DRVSEL* The rising edge of DRVSEL* also triggers a one-shot (1/2 of U54, 74LS123) which produces a Motor On to the district of the Motor On signal is approximately three seconds. The spindle motors are not designed for continuous operation. Therefore, the inactive state of the Motor On signal is used to clear the Drive Select Latch, which de-selects any drives which were previously selected. The Motor On one-shot is retriggerable by simply executing another OUT instruction to the Drive Select Latch.

Wait State Generation and WAITIMOUT Logic

As previously mentioned, a wait state to the CPU can be initiated by an OUT to the Drive Select Latch with D6 set Pin 18 of 118 will go high after this operation. This signal is inverted by 1/4th of U15 and is routed to the CPU where it forces the Z80A into a wait state. The Z80A will remain in the wait state as long as WAIT* is low. Once initiated, the WAIT* will remain low until one of five conditions is satisfied. If INTRQ, DRQ, and RESET, inputs become active (logic high), it causes WAIT* to go high which allows the Z80 to exit the wait state. An internal timer in U18 serves as a watchdog timer to insure that a wait condition will not persist long enough to destroy dynamic RAM contents. This internal watchdog timer logic will limit the duration of a wait to 1024µsec, even if the FDC chip should fail to generate a DRQ or an INTRQ.

If an OUT to Drive Select Latch is initiated with D6 reset (logic low), a WAIT is still generated The internal timer in U18 will count to 2 which will clear the WAIT state This allows the WAIT to occur only during the OUT instruction to prevent violating any Dynamic RAM parameters

NOTE: This automatic WAIT will cause a 5-1 μsec wait each time an out to Drive Select Latch is performed

Clock Generation Logic

A 16 MHz crystal oscillator and a Gate Array 4 4 (U18) are used to generate the clock signals required by the FDC board. The 6 MHz oscillator is implemented internal to U18 and a quartz crystal (Y2). The output of the oscillator is divided by 2 to generate an 8 MHz clock. This is used by the FDC 1773 for all internal timing and data separation. U18 further divides the 16 MHz clock to drive the watchdog timer circuit.

Disk Bus Output Drivers

High current open collector drivers U15 and U34 are used to buffer the output signals from the FDC circuit to the disk drives

Write Precompensation and Write Data Pulse Shaping Logic

All Write Precompensation is generated internal to the FDC chip 1773 (U17) Write Precompensation is enabled when W6 goes high and Write Precompensation is enabled from software This signal is multiplexed with RDY by W6 is fed into pin 20 of U17 Write Data is output pin 22 of U17 and is shaped by a one-shot (1/2 of U56) which stretches the data pulses to approximately 500 nsec

Floppy Disk Controller Chip

The 1773 is an MOS LSI device which performs the functions of a floppy disk formatter/controller in a single chip implementation. The following port addresses are assigned to the internal registers of the 1773 FDC chip:

Port No.	Function
FOH	Command/Status Register
F1H	Track Register
F2H	Sector Register
F3H	Data Register

4.2.16 RS-232-C Circuit

RS-232C Technical Description

The RS-232C circuit for the Model 4P computer supports asynchronous serial transmissions and conforms to the EIA RS-232C standards at the input-output interface connector (J4). The heart of the circuit is the TR1865 Asynchronous Receiver/Transmitter U33. It performs the job of converting the parallel byte data from the CPU to a serial data stream including start, stop, and parity bits. For a more detailed description of how this LSI circuit performs these functions, refer to the TR1865 data sheets and application notes. The transmit and receive clock rates that the TR1865 needs are supplied by the Baud Rate Generator U73 (BR1943) This circuit takes the 5 0688 MHz supplied by the system timing circuit and the programmed information received from the CPU over the data bus and divides the basic clock rate to provide two clocks. The rates available from the BRG go from 50 Baud to 19200 Baud. See the BRG table for the complete list

BRG Programming Table

Nibble	Transmit/ Receive Baud	16X	Supported by
Loaded	Rate	Clock	SETCOM
он	50	0.8 kHz	Yes
1H	75	1.2 kHz	Yes
2H	110	1.76 kHz	Yes
зн	134 5	2.1523 kHz	Yes
4H	150	2.4 kHz	Yes
5H	300	4.8 kHz	Yes
6H	600	9 6 kHz	Yes
7H	1200	19.2 kHz	Yes
8H	1800	28 8 kHz	Yes
9H	2000	32 081 kHz	Yes
AH	2400	38.4 kHz	Yes
BH	3600	57 6 kHz	Yes
CH	4800	76.8 kHz	Yes
DH	7200	115.2 kHz	Yes
EH	9600	153 6 kHz	Yes
FH	19200	307.2 kHz	Yes

The RS-232C circuit is port mapped and the ports used are E8 to EB. Following is a description of each port on both input and output

Port	input	Output
E8	Modem status	Master Reset, enables UART control register load
EA	UART status	UART control register load and modem control
E9	Not Used	Baud rate register load enable bit
EB	Receiver Holding register	Transmitter Holding register

Interrupts are supported in the RS-232C circuit by the Interrupt mask register and the Status register internal to GA 4 5 (U31) which allow the CPU to see which kind of interrupt has ocurred Interrupts can be generated on receiver data register full, transmitter register empty, and any one of the errors — parity, framing, or data overrun. This allows a minimum of CPU overhead in transferring data to or from the UART. The interrupt mask register is port EO (write) and the interrupt status register is port EO (read). Refer to the IO Port description for a full breakdown of all interrupts and their bit positions.

All Model I, III, and 4 software written for the RS-232-C interface is compatible with the Model 4P RS-232-C circuit, provided the software does not use the sense switches to configure the interface. The programmer can get around this problem by directly programming the BRG and UART for the desired configuration or by using the SETCOM command of the disk operating system to configure the interface. The TRS-80 RS-232C Interface hardware manual has a good discussion of the RS-232C standard and specific programming examples (Catalog Number 26-1145)

Pinout Listing

The following list is a pinout description of the DB-25 connector (P1)

Pin No.	Signal
1	PGND (Protective Ground)
2	TD (Transmit Data)
3	RD (Receive Data)
4	RTS (Request to Send)
5	CTS (Clear To Send)
6	DSR (Data Set Ready)
7	SGND (Signal Ground)
8	CD (Carrier Detect)
19	SRTS (Spare Request to Send)
20	DTR (Data Terminal Ready)
22	RI (Ring Indicate)

J1 J2 J3

Pin No.	Signal	Pin No.	Signal	Pin No.	Signal
1.	DATA STROBE	1.	XD0	1.	XD0
2.	GND	2	GND	2.	GND
3.	PD0	3.	XD1	3.	XD1
4.	GND	4.	GND	4.	GND
	PD1 GND	5. 6.	XD2 GND	5. 6.	XD2 GND
6. 7.	PD2	7.	XD3	7.	XD3
8.	GND	8.		8.	GND
	PD3		XD4	9.	XD4
10.	GND	10.	GND	10.	GND
	PD4		XD5	11.	XD5
12.	GND	12.		12.	GND
	PD5		XD6	13.	XD6
14.	GND	14. 15.	GND XD7	14. 15.	GND XD7
15.	PD6	16.	GND	16.	GND
17	PD7	17.	XAO	17.	XAO
10	GND	18.	GND	18	GND
19	N/A	19.	XA1	19.	XA1
20.	GND	20.		20.	
21.	GND PD6 GND PD7 GND N/A GND BUSY GND OUTPAPER GND UNIT SELECT NC GND FAULT N/A N/A N/C GND GND GND GND GND GND GND GND FAULT N/A N/C GND GND		XA2	21.	
22.	GND	22.	GND	22.	GND
23.	OUTPAPER		XA3		XA3
24.	GND	24 25	GND XA4	24. 25.	GND XA4
20.	NC	26	GND	26.	GND
27	GND	27.		27	XA5
28	FAULT	28.	GND	28.	GND
29	N/A	29	XA6	29	XA6
30.	N/A	30	GND		GND
31.	NC	31.		31.	XA7
32.	N/A	32.	GND	32.	GND
33.	NC GND	33.	XIN* GND	33. 34.	XIN* GND
34. 35.	GND	35	XOUT*	35.	XOUT*
36		36.	GND	36.	GND
37.		37.		37.	XRESET*
38.		38.	GND	38	GND
39.		39.	IOBUSINT*	39	IOBUSINT*
40.		40.	GND	40.	GND
41.		41.	IOBUSWAIT*	41.	IOBUSWAIT*
42.		42.	GIND	42.	GND
43 44		43. 44		44	EXTIOSEL* GND
45.		45.			NC
46.		46.		46.	GND
47.		47.		47	
48.		48.			GND
49.		49.		49	
50.		50.	GND	50.	GND

Pin No.	Signal	Pin No.	Signal	Pin	Signal		Signal
1.	PGND	1.	GND	No. 1.	D0	No.	GND
2.	TD	2.		2.	D1	2.	VOUT
3.	RD	3.	GND	3.	D2	3.	GND
4. 5.	CTS DSR	4.	CND	4.	D3	4.	VERTSYNC*
6.	CD	5. 6.	GND	5. 6.	D4 D5	5. 6.	GND HORZSYNC
7.	SGND	7.	GND	7.	D6	7.	HUNZSTNU
8.	CD	8	DIP*	8.	D7	8.	
9.		9.	GND	9.	GEN*	8. 9.	
10. 11.		10.	DSO*	10.	DCLK	10.	
12		11. 12.	GND DS1*	11.	AO	11.	
13.		13.	GND	12. 13.	A1 A2	12. 13.	
14.		14.	CIVE	14.	J	14.	
15.		15.	GND	15.	GRAFVID	15.	
16.		16.	MOTORON*	16.	ENGRAF	16.	
17. 18.		17.	GND	17.	DISPEN	17.	
19	SRTS	18 19	DIR* GND	18.	VSYNC	18.	
20	DTR		STEP*	19. 20.	HSYNC RESET*	19. 20.	
21.		21.	GND	21.	WAIT*	21	
	RI	22.	ŴD*	22.	H	22	
23		23	GND	23.	1	23.	
24. 25			WG*	24.		24.	
26			GND DTRK0*	25.	GND	25.	
27.			GND	26. 27.	+ 5V	26. 27.	
28.			DWPRT*	28.	CL166*	28	
29		29.	GND	29	GND	29.	
30.			DRRD*	30	+ 5V	30.	
31. 32.			GND	31.	GND	31.	
33.			SDSEL GND	32. 33.	+5V	32.	
34.		34.	CIND	34	GND +5V	33. 34.	

SECTION V CHIP SPECIFICATIONS

CHIP SPECIFICATIONS

4	4P	4 GATE ARRAY	4P GATE ARRAY
Motorola	Motorola	Motorola	Motorola
MC 6835	MC 6835	MC 6835	MC 6835
	Western Digital	Western Digital	Western Digital
	BR 1943	BR 1943	BR 1943
	(BR 1941L)		
	FD 1793	TR 1865	TR 1865
	(WD 179X)		
	FDC 9216	WD 1773	WD 1773
	TR 1865		
	WD 1943-00	MATRA	MATRA
MMI	MMI	Timing A. (4.1.1)	Timing A. (4.1.1)
PAL 16RGA (166)	PAL 16RGA S.T.	Address A. (4.2.0)	Address A. (4.2.0)
PAL 10L8 (208)	PAL 10L8 V.T.	Video A. (4.3.0)	Video A. (4.3.0)
	PAL 10L8 C.T.		The state of the s
PAL 16L8 (268)	PAL 16L8 MeMep	VTI	VTI
PAL 16L8 (368)	PAL 16L8 Page Mep	FDC A. (4.4.0)	FDC A. (4.4.0)
		RS-232 A. (4.5.0)	RS-232 A. (4.5.0)
Zilog	Zilog	Zilog	Zilog
280 A	280 A	280 A	280 A

ARRAY #: 4.1.1

CIRCUIT NAME: System Timing

NO. OF PINS: 24

MAX. CLOCK FREQ.: 20.2752 MHz

OPER TEMP.: ذC to 70°C

OPERATING VOLTAGE & RANGE: 5 V ± 5%

24 PIN CHIP

XTALØ'	1		24	VCC
XTALl	2		23	PCLK
1.2M16	3		22	RS232CLK
12M	4		21	SHIFT*
1.2MLØ	(5)		20	XADR7*
FAST	(<u>6</u>)		19	CRTCLK
8,064*	$\overline{7}$	4.1.1	18	LOADS*
MODSEL	8		17	DOT*
MAØ	9		16	LOAD*
N.C.	10		(15)	DCLK
J	(1)		(14)	Н
GND	(12)		13	I

SYSTEM TIMING SPECS

NUMBER	PARAMETER	MIN.	TYP.	MAX.	UNITS
1	20M Cycle Time		49.3		ns
2	20M Pulse Width (High)	2Ø			ns
3	20M Pulse Width (Low)	2Ø			ns
4	10M Cycle Time		98.6		ns
5	10M Pulse Width (High)	45 40			ns
6	10M Pulse Width (Low)	45 40			ns
7	RS232CLK Cycle Time		197.2		ns
8	RS232CLK Pulse Width (High)	92			ns
9	RS232CK Pulse Width (Low)	92			ns
10	PCLK* (Fast) Cycle Time		246,6		ns
11	PCLK* (Fast) Pulse Width (High)	110			ns
12	PCLK* (Fast) Pulse Width (Low)	110			ns
13	PCLK* (/Fast) Cycle Time		493,2		ns
14	PCLK* (/Fast) Pulse Width (High)	180			ns
15	PCLK* (/Fast) Pulse Width (Low)	180			ns
16	PCLK* Rise Time			13	ns
17	PCLK* Fall Time			13	ns
	DC CE	HARACTERIS	STICS (ALL PINS)		
		2.0	,		V
	Input Voltage Level (High) Input Voltage Level (Low)	2.0		.8	v
	Output Voltage Level (Low)	2.8	3.5	٥,	v
and the same	Output Voltage Level (Low)	2.0	35	.5	v
	Output Voltage Level (Low)		35	,5	•
	(ALL P	INS EXCEPT	CRTCLK OUTPUT)	
	Input Current Level (High)			40	μа
_	Input Current Level (Low)			-1.6	ma
_	Output Current Level (High)	-160			μа
_	Output Current Level (Low)	3.2			ma
	Output Garrent Level (Level)	0,2			
		(CRTCLK	OUTPUT)		
_	Output Current Level (High)	-400			μа
_	Output Current Level (Low)	8			ma
	Casper Carrotte motor (mon)	-			

Hardware 155

VIDEO TIMING SPECS

			10.1376 MI	l z	1	12.672 MH	z	
NUMBER	PARAMETER	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
1	VCLK Cycle Time		98.6			78 9		ns
2	VCLK Pulse Width (High)	40			3Ø			ns
3	VCLK Pulse Width (Low)	40			30			ns
4	DCLK Cycle Time		98.6			78.9		ns
5	DCLK Pulse Width (High)	40			30			ns
6	DCLK Pulse Width (Low)	40			30	70.0		ns
7	DOT Cycle Time		98.6		24	78.9		ns ns
8	DOT Pulse Width (High)	40			30			
9	DOT Pulse Width (Low)	40		_	30		5	ns ns
10	DCLK to DOT 1			5			5 27	ns
11	DCLK 1 to H, I, J 1		407.0	27		157.8	21	ns
12	H Cycle Time	0.0	197 2		70	157.6		ns
13	H Pulse Width (High)	9Ø			70 70			ns
14	H Pulse Width (Low)	9Ø	204.4		70	315.6		ns
15	l Cycle Time	100	394.4		150	313,0		ns
16	Pulse Width (High)	19Ø 19Ø			150			ns
17	I Pulse Width (Low)	190	788.8		150	631 2		ns
18	J Cycle Time	385	/00.0		305	0312		ns
19	J Pulse Width (High) J Pulse Width (Low)	385			305			ns
20	SHIFT Cycle Time	202			005			,,,
21	(64x16 & 8Øx24 Mode)		98.6			78.9		ns
	(32×16 & 40×24 Mode)		197.2			157.8		ns
22	SHIFT Pulse Width (Low)	30	137.2		30			ns
22	SHIFT 1 to LOADS ↓	Ø		27*	Ø		27*	ns
24	LOADS to SHIFT	5Ø*			50*			ns
25	LOADS Pulse Width (Low)	70	98.6		70	78,9		ns
26	LOADS 1 to SHIFT 1	50*			50*			ns
27	LOADS Cycle Time							
2.	(64x16 & 8Øx24 Mode)		788.8			631.2		ns
	(32×16 & 40×24 Mode)		1577.6			1262.4		ns
28	SHIFT 1 to LOAD 1			5			5	ns
29	LOAD Pulse Width (Low)	40			30			ns
30	LOAD Cycle Time							
	(64×16 & 8Ø×24 Mode)		788.8			631 2		ns
	(32x16 & 40x24 Mode)		1577,6			1262.4		ns
31	LOAD 1 to CRTCLK	Ø		27	Ø		27	ns
32	CRTCLK Cycle Time		788.8			631.2		ns
33	CRTCLK Pulse Width (High)	385			3Ø5			ns
34	CRTCLK Pulse Width (Low)	385			305			ns
35	CRTCLK ↑↓ to XADR7 ↓↑			5			5	ns
36	XADR7 Cycle Time		788.8			631.2		ns
37	XADR7 Pulse Width (High)	385			3Ø5			ns
38	XADR7 Pulse Width (Low)	385			3Ø5			ns

PIN	SIGNAL	MAX. <u>CAPACITANCE</u>
23	PCLK	35 pf
22	RS232CK	105 pf
21	SHIFT*	35 pf
20	XADR7*	35 pf
19	CRTCLK	35 pf
18	LOADS*	35 pf
17	DOT*	35 pf
16	LOAD*	35 pf
15	DCLK	35 pf
14	Н	35 pf
13	1	35 pf
11	J	35 pf

ARRAY #: 4.2.1

CIRCUIT NAME: Address Decode

NO. OF PINS: 40

MAX. CLOCK FREQ.: 4 MHz

OPER. TEMP.: ذ C to 70° C

OPERATING VOLTAGE & RANGE: 5 ± 5%

40 PINS USED
40 PIN CHIP

4.2.Ø
ADDRESS DECODE

M1 (1) \vee (40) VEC	
IOREQ (2) (39 IN*	
RD (38) OUT*	
$WR \qquad \boxed{4} \qquad \boxed{37} MRD*$	
MREQ (5) (36) $MOD4P$	
RFSH 6 35 MWR*	
A15 (7) (34) RASENØ*	
A14 (8) (33) RASENI*	
A13 (9) (32) MAPA15	
A12 (0) 4.2.1 (31) RAMBUSDIR	
All (1) 30 RAMBUSEN*	
Alø (12) (29) RAMRDEN/MCYCE	N
LPADD (13) (28) RAMWREN/ROMB*	
LPRQ* (14) (27) BUSDIR*	
DESPAGE (15) (26) BUSEN*	
ENPAGE (16) (25) SIXTN	
SRCPAGE (17) (24) VIDEO*	
SEL1 (18) (23) KEYBD*	
SELØ (19) (22) ROMCE*/ROMC*	
GND (20) (21) ROM*/ROMA*	

SIGNAL NAME	MODEL A MO	DDE	MODEL 4 MO	DE
MDD4P	"I" = +SV		"Ø" = GND	
MDD4.	1 - +3V		A - GIAD	
MI	MI	1	MI	ı
IOREQ	IOREQ	I	IOREQ	1
RD	RD	I	RD	I
WR	WR	I	WR	I
MREQ	MREQ	I	IOREQ	I
RFSH	RFSH	I	RFSH	Ī
DESPAGE	DESPAGE	I	DESPAGE	ĺ
ENPAGE	ENPAGE	Ī	ENPAGE	i
SRCPAGE	SRCPAGE	I	SRCPAGE	1
SEL1	SEL1	I	SEL1	Ī
SELØ	SELØ	I	SELØ	Ī
A15	A15	1	A15	Ī
A14	A14	1	A14	Ī
A13	A13	I	A13	Ī
A12	A12	I	A12	j
A11	A11	I	A11	I
A10	A1Ø	I	A1Ø	I
LPADD	LPADD	I	LPADD	I
SIXTN	SIXTN	I	SIXTN	1
IN*	IN*	0	IN*	0
OUT*	OUT*	0	OUT*	0
MRD*	MRD*	0	MRD*	0
MWR*	MWR*	0	MWR*	О
RASENØ*	RASENØ*	0	RASENØ*	0
RASEN1*	RASEN1*	0	RASEN1*	О
MAPA15	MAPA15	0	MAPA15	0
RAMBUSDIR	RAMBUSDIR	0	RAMBUSDIR	O
RAMBUSEN*	RAMBUSEN*	0	RAMBUSEN*	0
(RAMRDMCYC) RAM RDEN/MCYCEN	RAMRDEN	O	MCYCEN	0
RAM WREN/ROMB*	RAMWREN	0	ROMB*	0
BUSDIR*	BUSDIR*	0	BUSDIR*	0
BUSEN*	BUSEN4P*	0	DATACNT*	0
VIDEO*	VIDEO4P*	0	VIDEO4*	0
KEYBD*	KEYBD4P*	0	KEYBD4*	0
ROMCE*/ROMC*	ROMCE*	0	ROMC*	О
LPRQ*	LPRQ*	0	LPRQ*	0
ROM*/ROMA*	ROM*	I	ROMA*	0

I = INPUT O = OUTPUT

SPECS

		•	J. 200		
	PARAMETER	MIN.	TYP.	MAX.	UNITS
1	IOREQ ↑↓ * RD ↑↓ to IN ↓↑			35	ns
2	IOREQ ↑↓ * WR ↑↓ to OUT ↓↑			35	ns
3	RD ↑↓ to MRD ↓↑			35	ns
4	WR ↑↓ to MWR ↓↑			35	ns
5	A15 ↑↓ to RASENØ ↑↓			5Ø	ns
6	A15 ↑↓ to RASEN1 ↑↓			5Ø	ns
7	A15 ↑↓ to MAPA15 ↑↓			5Ø	ns
8	RD ↓↑ to RAMBUSDIR ↓↑			35	ns
9	MREQ ↑↓ to RAMBUSEN ↓↑			35	ns
1Ø	A15-A1Ø ↑↓ to RAMRDMCYC ↑↓			5Ø	ns
11	A15-A14 ↑↓ to RAMWREN ↑↓			50	ns
12	MREQ ↑↓ to ROMB ↓↑			35	ns
13	IOREQ ↑↓ to BUSDIR ↓↑			35	ns
14	RD ↑↓ to BUSDIR ↓↑			35	ns
15	MREQ ↑↓ to BUSEN ↓↑			5Ø	ns
ίô	WREQ 1\$ to VIDEO \$1			35	ns
17	MREQ ↑↓ to KEYBD ↓↑			35	ns
18	MREQ ↑↓ to ROMCE ↓↑			35	ns
19	MREQ ↑↓ to ROMC ↓↑			35	ns
20	MREQ ↑↓ to LPRQ ↓↑			35	ns
21	MREQ ↑↓ to ROMA ↓↑			35	ns
22	PCLK ↑↓ to PCLK ↓↑	110	123		ns
23	PCLK Cycle Time		246		ns
24	PCLK 1 to M1 1			1Ø6	ns
25	PCLK ↓ to MREQ ↑			91	ns
26	A10-A15 ↑↓ to MREQ ↑	5Ø			ns
27	PCLK ↓ to RD ↑			1Ø1	ns
28	PCLK ↑ to A10—A15 ↑↓			128	ns
29	PCLK ↑ to A10—A15 ↑↓			128	ns
3Ø	PCLK ↑ to M1 ↓			136	ns
31	PCLK ↑ to MREQ ↓			91	ns
32	MREQ ↓ to MREQ ↑	110			ns
33	PCLK ↑ to RD ↓			91	ns
34	PCLK 1 to RFSH 1			136	ns
35	RFSH ↑↓ to RASEN Ø or RASEN1 ↑↓			35	ns
36	PCLK ↓ to MREQ ↓			91	ns
37	MREQ Pulse Width (High)	220		126	ns
38	PCLK ↑ to RFSH ↓				
39	A1—A9 ↑↓ to LPADD ↑↓			3Ø	ns
4Ø	PCLK ↓ to WR ↑↓			86	ns
41	PCLK ↓ to RD ↓			91	ns
42	Control Lines ↑↓ to Affected Signals ↑↓			35	ns
43	AØ—A15 ↑↓ to IOREQ ↑	200			ns
44	PCLK ↑ to IOREQ ↑			81	ns
45	PCLK 1 to RD 1			91	ns
46	PCLK 1 to WR 1			71	ns

M1 CYCLE

Hardware 165

CONTROL LINES

DC CHARACTERISTICS (ALL PINS) $0^{\circ} - 70^{\circ}$ C

PARAMETER	MIN.	TYP.	MAX.	UNITS		
Input Voltage Level (High)	2.Ø			V		
Input Voltage Level (Low)			.8	V		
Output Voltage Level (High)	2.7	3.5		V		
Output Voltage Level (Low)		.35	.5	V		
(ALL PI	NS EXCEPT OUT	*, RAMRDEN/MC	YCEN)			
Input Current Level (High)			20	μa		
Input Current Level (Low)			4	ma		
Output Current Level (High)	-200			μa		
Output Current Level (Low)	4			ma		
(OUT*, RAMRDEN/MCYCEN)						
Output Current Level (High)	-400			μa		
Output Current Level (Low)	8			ma		

	PIN	SIGNAL	MAX. CAPACITANCE
	<u>r IIV</u>	JUNAL	CALACITANCE
	39	IN*	35 pf
	38	OUT*	35 pf
	37	MRD*	35 pf
	35	MWR*	128 pf
	34	RASENØ*	35 pf
	33	RASEN1*	35 pf
	32	MAPA15	35 pf
	31	RAMBUSDIR	35 pf
	30	RAMBUSEN*	35 pf
	29	RAMRDEN/MCYCEN	35 pf
	28	RAMWREN/ROMB*	35 pf
	27	BUSDIR*	35 pf
	26	BUSEN*	35 pf
	24	VIDEO*	35 pf
	23	KEYBD*	35 pf
	22	ROMCE*/ROMC*	35 pf
(OUTPUT)	21	ROMA*	35 pf
	14	LPRQ*	35 pf

ARRAY #: 4.3.0

CIRCUIT NAME: Video Support

NO. OF PINS: 40

MAX. CLOCK FREQ.: 12.672 MHz

OPER. TEMP.: ذC to 7ذC

OPERATING VOLTAGE & RANGE: 5 ± 5%

39 PINS USED

40 PIN CHIP

4.3.8

VIDEO SUPPORT

Hardware 171

CGA7	1		40	+5V
CGA8	2	v	39	
CGA9	3		38	
CGA LØ	4		37	CGA4
SRD7	5		36	CGA3
SRD6	6		35	RA3
SRD5	7	:	34	RA2
SRD4	8		33	CGD7
SRD3	9		32	CGD6
SRD2	10		31	CGD5
SRD1	11		30	CGD4
SRD0	12		29	CGD3
DLYCHAR*	13		28	CGD2
DLYCHAR	14		27	CGD1
DISPEN	15		26	CGD0
CL166 *	16		25	INVERSE
ENGRAF	17		24	ENALTSET
GRAFVID	18		23	LOAD*
* TUOV	19		22	LOADS*
GND	20		21	SHIFT*

				SPECS	
	PARAMETER	MIN.	TYP.	MAX.	UNITS
1 * *	SRDØ—SRD7 ↑↓ to LOAD ↑	61			ns
2*	Inputs DØ-D7 of LS273 ↑↓ to LOAD ↑	2Ø			ns
3	LOAD ↑ to CGA3-CGA1Ø ↑↓	Ø		6Ø	ns
4	RA2, RA3 ↑↓ to Outputs of LS153 ↑↓	Ø		38	ns
5	Inputs CGA3—CGA1Ø of LS153 ↑↓ to Outputs ↑↓	Ø		3Ø	ns
6	DLYGRAPHIC ↓ to Outputs of LS244 ↑↓	Ø		30	ns
7	DLYGRAPHIC 1 to Outputs of LS244 Tristate	Ø		3Ø	ns
8	ENALTSET ↑↓ to CGA9 ↑↓	Ø		35	ns
9	INVERSE ↑↓ to Inputs D7 of LS273 ↑↓	Ø		35	ns
1Ø	INVERSE ↑↓ to INVDISPEN, CHAR ↑↓	Ø		40	ns
11	INVERSE ↑↓ to Input to 51 ↑↓	Ø		20	ns
12	SRD6 ↑↓ to CHAR ↑↓	Ø		40	ns
13	DISPEN ↑↓ to Input DØ of LS175 ↑↓	Ø		20	ns
14	DISPEN ↑↓ to INVDISPEN ↑↓	Ø		40	ns
15	ENGRAF ↑↓ to INVDISPEN ↑↓	Ø		40	ns
16	ENGRAF ↑↓ to Inputs of 51 ↑↓	Ø		20	ns
17	GRAFVID ↑↓ to Input of 51 ↑↓	Ø		5	ns
20**	CGDØ-CGD7 ↑↓ to LOADS ↓ & SHIFT ↑	100			ns
21	RA3 ↑↓ to DLYBLANK ↑↓ Ø	27		5Ø	ns
22	LOAD ↑ to DLYBLANK ↑↓ Ø	27		5Ø	ns
23**	LOADS ↓ to SHIFT ↑	5Ø			ns
24*	SHFT/LD ↓ to SHIFT ↑	3Ø			ns
25	CL166 ↑↓ to QH ↑↓	Ø		3Ø	ns
26*	LOAD ↑ to SHIFT ↑			± 5	ns
271	LOAD 1 to VIDEO2 $\uparrow\downarrow$ = SHIFT 1 to VIDEO1 $\uparrow\downarrow$			± 5	ns
28	GRAFVID ↑↓ to VIDEO2 ↑↓	Ø		15	ns
29	VIDEO2 ^{↑↓} , VIDEO1 ^{↑↓} to VOUT ^{↑↓}	Ø		20	ns
30	ENGRAF ↑↓ to VIDEO2 ↑↓	Ø		15	ns
31	DLYCHAR* ↑ to CGDØ—CGD7 Tristate			15Ø	ns
32	CRTCLK ↓ to DISPEN			300	ns

¹ The delay from $\overline{\text{LOAD}}$ ↑ to VIDEO2 ↑↓ should equal the delay from $\overline{\text{SHIFT}}$ ↑ to VIDEO1 ↑↓.

^{*} Specs required for TLL components—can be changed to meet the setup & hold time specs of array logic.

^{**}Specs provided are for reference, timing is from external logic.

Hardware 174

DLYCHAR* & DLYGRAPHIC* CONTROL

GRAFVID, ENGRAF, CL166*, VIDEO1

RELATIONSHIP

CGA9	В		æ	-	B	_	B	Ø
90	В	_	Я		Я	_	В	-
CGA10	æ	ø	-	_	Ø	æ	_	
ENALTSET	B	Ø	Ø	Ø			_	

ENALTSET CONTROL

DC CHARACTERISTICS (ALL PINS) $0^{\circ} - 70^{\circ}$ C

PARAMETER	MIN.	TYP.	MAX.	UNITS
Input Voltage Level (High)	2.Ø			V
Input Voltage Level (Low)			.8	
Output Voltage Level (High)	2.7	3.5	.0	V
Output Voltage Level (Low)		.35	.5	V
Input Current Level (High)			20	112
Input Current Level (Low)			4	μα
Output Current Level (High)	200		— <u>,4</u>	ma
Output Current Level (Low)	4			μa
2070, (2007)	4			ma

PIN	SIGNAL	MAX. <u>CAPACITANCE</u>
4	CGA1Ø	35 pf
3	CGA9	35 pf
2	CGA8	35 pf
1	CGA7	35 pf
39	CGA6	35 pf
38	CGA5	35 pf
37	CGA4	35 pf
36	CGA3	35 pt
13	DLYCHAR*	35 pf
14	DLYCHAR	35 pf
19	VOUT*	35 pf

ARRAY #: 4.4.0

CIRCUIT NAME: Floppy Disk Support

NO. OF PINS: 24

MAX. CLOCK FREQ.: 8 MHz

MAX. PROP. DELAY THROUGHPUT: 75 ns

OPER. TEMP: 0°C to 70°C

OPERATING VOLTAGE & RANGE: 5 V ± 5%

24 PIN CHIP

FLOPPY DISK SUPPORT

		SPEC.					
	PARAMETER	MIN	TYP	MAX	UNITS		
1.	Data Setup Time	560			ns		
2.	Data Hold Time	50			ns		
3.	Reset* Pulse Width		70	100	μ s		
4.	Reset* ↓ to Wait or NMI ↓			75	ns		
5.	WRNMI* ↑ to 74LS74 Q's Outputs ↓↑			75	ns		
6.	DRVSEL* ↓ to MOTORON ↑			75	ns		
*7.	MOTORON Pulse Width (Low)	3	4	5	sec.		
8.	DRVSEL* ↓ to WAIT ↑			75	ns		
9.	DRVSEL* ↓ to CLRWAIT ↑	500		1100	ns		
10.	DRVSEL* ↓ to WAITIMOUT ↑	1024		1050	μs		
11.	DRVSEL* ↑ to ENP/RDY ↑↓			75	ns		
12.	DRVSEL* ↑ to EXTSEL ↑↓			75	ns		
13.	INTRQ ↑ or DRQ ↑ to WAIT ↓			75	ns		
14	INTRO LOI DRO LO CLRWAIT \$			75	115		
15.	INTRQ ↑ or DRQ ↑ to WAITIMOUT ↓			75	ns		
16.	8 MHZ Cycle Time		125		ns		
17.	8 MHZ Pulse Width (Low)	50	62.5		ns		
18.	8 MHZ Pulse Width (High)	5Ø	62.5		ns		
19	WG ↑↓ to ENP/RDY ↑↓			75	ns		
20.	RDNMI* ↓ to DØ, D5-D7 Valid			75	ns		
21.	RDMMI* ↑ to DØ, D5-D7 Tristate Ø			75	ns		

^{*} MOTORON Circuit Must Simulate a Retriggerable Monostable Multivibrator (74LS123)

CAPACITANCE LOAD

OUTPUT	CAPACITANCE MAX.
DØ	8Ø pf
D5	80 pf
D6	8Ø pf
D7	8Ø pf
8 MHZ	15 pf
ENP/RDY	15 pf
MOTORON	15 pf
EXTSEL	15 pf
NMI	15 pf
WAIT	15 pf

DC CHARACTERISTICS ذ - 70° C

(ALL PINS)

PARAMETER	MIN.	TYP.	MAX.	UNITS
Input Voltage Level (High)	2.0			V
Input Voltage Level (Low)			.8.	V
Output Voltage Level (High)	27	3.5		V
Output Voltage Level (Low)		35	.5	V
	(ALL PINS EXCEPT MOT	ORON & DØ, D5-D	7)	
Input Current Level (High)			20	μа
Input Current Level (Low)			4	ma
Output Current Level (High)	-160			μа
Output Current Level (Low)	3.2			ma
•				
	MOTOR	ON		
Output Current Level (High)	-240			μа
Output Current Level (Low)	4.8			ma
Output outrome dover (====,				
	DØ, D5-	.D7		
Input Current Level (High)	•		20	μa
Input Current Level (Low)			4	ma
Output Current Level (High)	-280		- •	μа
Output Current Level (Low)	5.6			ma

ARRAY #: 4.5.0

CIRCUIT NAME: RS232 Support

NO. OF PINS: 40

OPER. TEMP.: ذC to 70°C

OPER. VOLTAGE: 5V ± 5%

		VCC I		
AO	1 [9	RTS
Al	2		10	DTR
RDINTSTATUS	3		7	SRTS
WRINTMASKREG	4		8	ENTD
RS232IN	5		21	OUTE8
RS232OUT	6		38	OUTE9
CTS	14		11	OUTEA
DSR	15	4.5.0	23	OUTEB
CD	16	40 PIN	18	INEB
RI	20			
RD	13		37	INT
PE	26			
FE	25		27	BDØ
DE	24		28	BD1
THRE	22		29	BD2
DR	19		30	BD3
RTCIN	36		31	BD4
XINT	35		32	BD5
WR	39		33	BD6
N. (c. <u>11</u>		34	BD7
	Į	12	1	

D. C. CHARACTERISTICS Ø - 70° C

	UNITS	^	>	>	>	μa	ma	та та та та та та
	MAX.		œί		ιċ	20	4,-	
	TYP,		** · · · · · · · · · · · · · · · · · ·	3.5	.35			
2 0 0 1	MIN.	2.0		2.7				120 120 280 280 120 -3.2 -8.0 -5.6
C. Chanaclenistics w - /w c			VIL	н) Vон	v) Vol	H	ηι	1) IOH (all except INT, INEB & BD) INT (O.C. or D.D.) BD BUS INEB INEB (All except INT, INEB, & BD) INT, (O.C. or D.D.) BD BUS INTB INT
		Input Voltage (High)	Input Voltage (Low)	Output Voltage (High)	Output Voltage (Low)	Input Current (High)	Input Current (Low)	Output Current (High) Output Current (Low)

PROP, DELAY & TIMING	MIN.	TYP,	MAX.
Data In* to BD Bus			75
RS232 IN ↓ to BD Bus			75
BD Bus Set Up to WR 1	75		
BD Bus Hold Time From WR ↑			60
AØ, A1 to INEB, OUTEB, OUTE9, OUTEA, OUTEB			75
RS232IN, RS232OUT ↓ to INEB OUTEB, OUTE9, OUTEA, OUTEB			75
WR ↑ to OUTE8, OUTE9, OUTEA, OUTEB (WOULD LIKE 18)			32
RS2320UT \$ to RTS, DTR, ENTD, SRTS			75
PE, FE, DE, THRE, DR, RTCIN, XINT to INT ↓			75

All Delay In NSEC.

*Data in is any of the following inputs: PE, FE, DE, THRE, DR, RTCIN, XINT, CTS, DSR, CD, RI & RD.

 C_{OUT} Max = 100 pf for BD Bus, \overline{INT} , & \overline{INEB} ; all others C_{OUT} Max = 50 pf.

	MIN.	TYP.	MAX.
t ₁	168		
t ₂	168		
t ₃	-34		Ø
t ₄	-34		Ø
t ₅			75
t ₆			75
t ₇			34
t ₈			6Ø
t ₉	24		250
t ₁₀	24		25Ø
t ₁₁	75		
t ₁₂	75		
t ₁₃			75
t ₁₄			32

(Need 18)

All Timing in NSEC.

350) ED BILUESTIEN BLAD, AUSTIN, TEXAS, 70729

Advance Information

CRT CONTROLLER (CRTC)

The MC6835 is a ROM based CRT Controller which interfaces an MPU system to a raster scan CRT display. It is intended for use in MPU based controllers for CRT terminals in stand-alone or cluster configurations. The MC6835 supports two selectable mask programmed screen formats using the program select input (PROG).

The CRTC is optimized for the hardware/software balance required for maximum flexibility. All keyboard functions, reads, writes, cursor movements, scrolling, and editing are under processor control. The mask programmed registers of the CRTC are programmed to control the video format and timing.

- Cost Effective ROM Based CRTC Which Supports Two Screen Formats
- Useful in Monochrome or Color CRT Applications
- Applications Include "Glass-Teletype." Smart. Programmable. Intelligent CRT Terminals; Video Games; Information Displays
- Alphanumeric, Semigraphic, and Full Graphic Capability
- Timing May Be Generated for Almost Any Alphanumeric Screen Format, e g . 80 x 24, 72 x 64, 132 x 20
- Single +5 Volt Supply
- M6800 Compatible Bus Interface
- TTL-Compatible Inputs and Outputs
- Start Address Register Provides Hardware Scroll (By Page, Line. or Character)
- Programmable Cursor Register Allows Control of Cursor Position
- Refresh (Screen) Memory May Be Multiplexed Between the CRTC and the MPU Thus Removing the Requirements for Line Buffers or External DMA Devices
- Mask Programmable Interlace or Non-Interlace Scan Modes
- 14-Bit Refresh Address Allows Up to 16K of Refresh Memory for Use in Character or Semigraphic Displays
- 5-Bit Row Address Allows up to 32 Scan-Line Character Blocks
- By Utilizing Both the Refresh Addresses and the Row Addresses, a 512K Address Space is Available for Use in Graphics Systems
- Refresh Addresses are Provided During Retrace. Allowing the CRTC to provide Row Addresses to Refresh Dynamic RAMs
- Pin Compatible with the MC6845 The MC6845 May Be Used as a Prototype Part to Emulate the MC6835

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	vcc.	-0.3 to +7.0	٧
Input Voltage	V _{in} •	-0.3 to +7.0	V
Operating Temperature Range MC6835. MC68A35. MC68B35 MC6835C, MC68A35C, MC68B35C	TA	0 to +70 -50 to +85	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C

^{*}With respect to GND (Vgg)

MC6835

MOS

(HIGH-DENSITY, N-CHANNEL, SILICON-GATE DEPLETION LOAD)

MASK PROGRAMMED CRT CONTROLLER (CRTC)

PIN	ASSIGNMENT
GNDI 1 💩	40 IVS
RESET [2	зя 🗖 нѕ
РВОС Г З	38 T RAO
MA0 []	37 1 RA1
MA1 	36 J RA2
МА2₫6	35 1 RA3
MA3 [] 7	34 [] RA4
MA4 [8	33 🗖 🗅 🗅 0
MA5 [9	32 p D1
MA6 10	31 02
MA7 [11	30 j D3
MA8 [12	29 1 D4
мА9 Ц 13	28 D D5
MA10 [14	27 D D6
MA11 [15	26 D D7
MA12 0 16	25 d CS
MA13 ∏ 17	24 1 RS
DE ∏ 18	23 1 E
CURSOR 19	22 þ ₩
V _{CC} I 20	21 月 CLK

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Rating
Thermal Resistance Plastic Cerdip	θυΑ	100 60 50	°C/W

DECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.75	5.0	5.25	٧
Input Low Voltage	VIL	-0.3		0.8	V
Input High Voltage	VIH	2.0	-	VCC	V

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation it is recommended that V_{in} and V_{out} be constrained to the range VSS(≤ Vin or Vout)≤ VCC Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either VSS or VCC)

POWER CONSIDERATIONS

The average chip-junction temperature, TJ, in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \cdot \theta_{JA})$$

Where:

TA = Ambient Temperature, °C

 $\theta_{JA} = Package Thermal Resistance, Junction-to-Ambient, °C/W$

PD = PINT + PPORT

 $P_{1NT} = I_{CC} \times V_{CC}$, Watts - Chip Internal Power

PPORT = Port Power Dissipation, Watts - User Determined

For most applications PPORT ◀ PINT and can be neglected PPORT may become significant if the device is configured to drive Darlington bases or sink LED loads

An approximate relationship between PD and TJ (if PPORT is neglected) is:

 $P_D = K + (T_J + 273^{\circ}C)$

(2)

(1)

Solving equations 1 and 2 for K gives:

 $K = PD \bullet (T_A + 273 \circ C) + \theta JA \bullet PD^2$

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring PD (at equilibrium) for a known TA. Using this value of K the values of PD and TJ can be obtained by solving equations (1) and (2) iteratively for any value of TA

DC ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 Vdc ±5%, V_{SS} = 0, T_A = 0 to 70°C unless otherwise noted) (Reference Figures 2-4) Symbol Min Тур Characteristic VIH 2.0 Vcc Input High Voltage 0.8 V - 0.3 VIL Input Low Voltage 0 1 2.5 μА Input Leakage Current Hi-Z (Off State) Input Current ($V_{CC} = 5.25 \text{ V}$) ($V_{in} = 0.4 \text{ to } 2.4 \text{ V}$) ITSI - 10 10 μΑ Output High Voltage (I_{Load} = -100 μA) 24 30 V VOL 0.3 04 Output Low Voltage (I)oad = 1 6 mA) mW PD 150 300 Internal Power Dissipation (Measured at TA = 0°C) 00-07 Input Capacitance c_{in} pΕ All Others Cout pF All Outputs 10 Output Capacitance

BUS TIMING CHARACTERISTICS (Reference Figures 2 and 3)

ldent.		MC683						MC68B35		
Number	Characteristics	Symbol	Min	Max	Min	Max	Min	Max	Unit	
1	Cycle Time	toyo	10	10	0.67	10	0.5	10	μs	
2	Pulse Width, E Low	PWEL	430	-	280	-	210	-	ns	
3	Pulse Width, E High	PWEH	450	_	280	-	220		กร	
4	Clock Transition Time	t _f , t _f		25		25		20	ns	
9	Address Hold Time (RS)	1AH	10	-	10		10		ns	
13	RS Setup Before E	IAS	80		60	-	40		ns	
14	W and CS Setup Before E	†CS	80	-	60		40	-	ns	
15	Hold Time for W and CS	1CH	10		10		10		ns	
21	Write Data Hold Time Required	¹DHW	10	-	10		10		ns	
31	Peripheral Input Data Setup	¹ DSW	165	-	80		60		ns	

NOTES:

- 1 Voltage levels shown are V_L≤0.4 V. V_H≥2.4 V unless otherwise noted
- 2 Measurement points shown are 0.8 V and 2.0 V unless otherwise noted

FIGURE 3 - BUS TIMING TEST LOAD

C = 130 pF for D0-D7 = 30 pF for MA0-MA13, RA0-RA4 DE, HS VS, and CURSOR R = 11 k Ω for D0-D7 = 24 k Ω for All Other Outputs

		MC	6835	MC6	8A35	MC6	Unit	
Characteristics	Symbol	Min Max		Min	Max	Min		
Minimum Clock Pulse Width, Low	PWCL	150		140	-	130		ns
Minimum Clock Pulse Width, High	PWCH	150		140		130	_	ns
Clock Frequency	t _c	330	-	300	-	270	-	ns
Rise and Fall Time for Clock Input	t ₁ , 1 ₁		20	-	20		20	ns
Memory Address Delay Time	1MAD		100	-	16U	-	160	ns
Raster Address Delay Time	¹ RAD	-	160	-	160	-	160	ns
Display Timing Delay Time	'DTD		250		250	-	200	ns
Horizontal Sync Delay Time	^t HSD		250	_	250		200	ns
Vertical Sync Delay Time	tvsp	-	250	-	250		200	กร
Cursor Display Timing Delay Time	¹CDD	-	250	_	250	-	200	ns

FIGURE 4 - CRTC TIMING CHART

NOTE. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts unless otherwise noted

CRTC INTERFACE SYSTEM DESCRIPTION

The MC6835 CRT Controller generates the signals necessary to interface a digital system to a raster scan CRT display. In this type of display, an electron beam starts in the upper left hand corner. moves quickly across the screen and returns. This action is called a horizontal scan. After each horizontal scan the beam is incrementally moved down in the vertical direction until it has reached the bottom. At this point one frame has been displayed, as the beam has made many horizontal scans and one vertical scan.

Two types of raster scanning are used in CRTs, interlace and non-interlace, shown in Figures 5 and 6 Non-interlacing scanning consists of one field per frame. The scan lines in Figure 5 are shown as solid lines and the retrace patterns are indicated by the dotted lines. Increasing the number of frames per second will decrease the flicker. Ordinarily, either a 50 or 60 frame per second refresh rate is used to minimize beating between the frequency of the CRT horizontal oscillator and the power line frequency. This prevents the displayed data from weaving or swimming.

Interlace scanning is used in broadcast TV and on data monitors where high density or high resolution data must be displayed. Two fields, or vertical scans are made down the screen for each single picture or frame. The first field (Even

field) starts in the upper left hand corner; the second (Odd field) in the upper center. Both fields overlap as shown in Figure 6, thus interlacing the two fields into a single frame

In order to display the characters on the CRT screen the frames must be continually repeated. The data to be displayed is stored in the Refresh (Screen) memory by the MPU controlling the data processing system. The data is usually written in ASCII code, so it cannot be directly displayed as characters. A Character Generator ROM is typically used to convert the ASCII codes into the "dot" pattern for every character.

The most common method of generating characters is to create a matrix of "x" dots (columns) wide and "y" dots (rows) high Each character is created by selectively filling in the dots. As "x" and "y" get larger a more detailed character may be created. Two common dot matrices are 5-x" and 7-x9. Many variations of these standards will allow Chinese. Japanese, or Arabic letters instead of English Since characters require some space between them. a character block larger than the character is typically used as shown in Figure 7. The figure also shows the corresponding timing and levels for a video signal that would generate the characters.

Active Display

Retrace

Vertical Scan Period

Vertical Retrace Period

Period

Period

Period

Period

FIGURE 5 - RASTER SCAN SYSTEM (NON-INTERLACE)

FIGURE 6 - RASTER SCAN SYSTEM (INTERLACE)

FIGURE 7 — CHARACTER DISPLAY ON THE SCREEN AND VIDEO SIGNAL

Referring to Figure 1, the MC6835 CRT controller generates the Refresh addresses (MA0-MA13), row addresses (RA0-RA4), and the video timing (vertical sync – VS, horizontal sync – HS and display enable – DE) Other functions include an internal cursor register which generates a Cursor output when its contents compare to the current Refresh address. A select input, PROG, allows selection of one of two mask programmed video formats (e.g. for 50 Hz and 60 Hz compatibility).

All timing in the CRTC is derived from the CLK input. In alphanumeric terminals, this signal is the character rate. The video rate or "dot" clock is externally divided by high speed logic (TTL) to generate the CLK signal. The high speed logic must also generate the timing and control signals necessary for the Shift Register, Latch and MUX Control shown in Figure 1.

The processor communicates with the CRTC through an 8-bit data bus by writing into the five user programmable registers of the MC6835

The Refresh memory address is multiplexed between the processor and the CRTC. Data appears on a secondary bus separate from the processor's bus. The secondary data bus concept in no way precludes using the Refresh RAM for other purposes. It looks like any other RAM to the processor A number of approaches are possible for solving contentions for the Refresh memory.

1 Processor always gets priority (Generally, "hash" occurs as MPU and CRTC clocks are not synchronized.)

- 2 Processor gets priority access anytime, but can be synchronized by an interrupt to perform accesses only during horizontal and vertical retrace times
- 3 Synchronize the processor with memory wait cycles (states)
- 4 Synchronize the processor to the character rate as shown in Figure 8 The M6800 processor family works very well in this configuration as constant cycle lengths are present This method provides no overhead for the processor as there is never a contention for a memory access All accesses are transparent

FIGURE 8 — TRANSPARENT REFRESH MEMORY CONFIGURATION TIMING USING M6800 FAMILY MPU

Where in in are integers; to is character period

PIN DESCRIPTION

PROCESSOR INTERFACE

The CRTC interfaces to a processor bus on the data bus (D0-D7) using \overline{CS} , RS, E, and \overline{W} for control signals

Data Bus (D0-D7) - The data lines (D0-D7) comprise the write only data bus

Enable (E) — The Enable signal is a high-impedance TTL/MOS-compatible input which enables the data bus input/output buffers and clocks data to the CRTC. This signal is usually derived from the processor clock. The high-to-low transition is the active edge.

Chip Select (\overline{CS}) — The \overline{CS} line is an active-low high-impedance TTL/MOS-compatible input which selects the CRTC write to the internal register file. This signal should only be active when there is a valid stable address being decoded from the processor

Register Select (RS) — The RS line is a high-impedance TTL/MOS-compatible input which selects either the Address Register (RS="0") or one of the Data Registers (RS="1") of the internal register file when $\overline{\text{CS}}$ is low

Write $\{\overline{W}\}$ — The \overline{W} line is a high-impedance TTL/MOS-compatible input which determines whether the internal register file gets written. A write is defined as a low level

CRT CONTROL

The CRTC provides horizontal sync (HS), vertical sync (VS), and display enable (DE) signals

NOTE — Care should be exercised when interfacing to CRT monitors as many monitors claiming to be "TTL compatible." have transistor input circuits which require the CRTC or TTL devices buffering signals from the CRTC/video circuits to exceed the maximum rated drive currents

Vertical Sync (VS) and Horizontal Sync (HS) — These TTL-compatible outputs are active-high signals which drive the monitor directly or are fed to the video processing circuitry to generate a composite video signal. The VS signal determines the vertical position of the displayed text while the HS signal determines the horizontal position of the displayed text.

Display Enable (DE) — This TTL-compatible output is an active-high signal which indicates the CRTC is providing addressing in the active Display Area

REFRESH MEMORY/CHARACTER GENERATOR ADDRESSING

The CRTC provides Memory Addresses (MA0-MA13) to scan the Refresh RAM. Row Addresses (RA0-RA4) are also provided for use with character generator ROMs. In a graphics system both the Memory Addresses and the Row Addresses would be used to scan the Refresh RAM. Both

the Memory Addresses and the Row Addresses continue to run during vertical retrace thus allowing the CRTC to provide the refresh addresses required to refresh dynamic RAMs

Refresh Memory Addresses (MA0-MA13) — These 14 outputs are used to refresh the CRT screen with pages of data located within a 16K block of refresh memory. These outputs are capable of driving one standard TTL load and 30 pF.

Row Addresses (RA0-RA4) — These five outputs from the internal. Row. Address counter are used to address the Character Generator ROM. These outputs are capable of driving one standard TTL load and 30 pF.

OTHER PINS

 ${\bf Cursor}$ — This TTL-compatible output indicates a valid Cursor address to external video processing logic. It is an active-high signal

Clock (CLK) — The CLK is a TTL/MOS-compatible input used to synchronize all CRT functions except for the processor interface. An external dot counter is used to derive this signal which is usually the character rate in an alphanumeric CRT. The active transition is high-to-low

Program Select (PROG) — This TTL-compatible input allows selection of one of two sets of mask programmed video formats. Set zero is selected when PROG is low and set one is selected when PROG is high

 V_{CC} , GND - These inputs supply +5 Vdc \pm 5% to the CRTC

RESET — The RESET input is used to reset the CRTC Functionality of RESET differs from that of other M6800 parts RESET must remain low for at least one cycle of the character clock (CLK). A low level on the RESET input forces the CRTC into the following state:

- a All counters in the CRTC are cleared and the device stops the display operation
- b All the outputs are driven low, except the MA0-MA13 outputs which are driven to the current value in the Start Address Register
- c The control registers of the CRTC are not affected and remain unchanged
- d The CRTC resumes the display operation immediately after the release of RESET

CRTC DESCRIPTION

The CRTC consists of mask-programmable horizontal and vertical timing generators, software-programmable linear address register, mask-programmable cursor logic and control circuitry for interfacing to a M6800 family microprocessor bus

All CRTC timing is derived from CLK, usually the output of an external dot rate counter. Coincidence (CO) circuits continuously compare counter contents to the contents of the

		Ad	dres	s A	eai	ster	Register	B (Program	D	144-1	Γ		Vun	nbe	r of	Bit	 3	
cs	RS	4	3	2	1	0	,	Register File	Unit	Read	Write	7	6	5	4	3	2	1	0
1	х	Х	Х	Х	Х	х	X		-					N	N			V	abla
0	0	X	Х	Х	Х	X	AR	Address Register	-	No	Yes	\sum		N					
						7	RO	Horizontal Total	Char.	No	No	I							
						/	R1	Horizontal Displayed	Char.	No	No				L				
١)	\				/		R2	H. Sync Position	Char	No	No			l	_				
	/	No	te 3	/	•		R3	Sync Width	-	No	No	٧	٧	٧	٧	Н	Н	Н	Н
	'	\	,	/			R4	Vertical Total	Char. Row	No	No								
							R5	V. Total Adjust	Scan Line	No	No								
ĺ		/	\				R6	Vertical Displayed	Char. Row	No	No	K		Γ				П	
	,	/	- /	\			R7	V. Sync Position	Char. Row	No	No	K							
				/			R8	Interlace Mode and Skew	Note 1	No	No	С	С	D	D			1	П
l	/				/		R9	Max Scan Line Address	Scan Line	No	Nο	abla	\setminus	abla		Г	Г		
/					,	\	B10	Cursor Start	Scan Line	No	No		В	Р	Т	1	IN	ote	2)
/						/	811	Cursor End	Scan Line	No	No		/	N	I			П	
0	1	0	1	1	0	0	R12	Start Address (H)	-	No	Yes	0	0		T	Г			
0	1	0	1	1	0	1	R13	Start Address (L)	-	No	Yes								
0	1	0	1	1	1	0	R14	Cursor (H)		Νo	Yes	0	0						
0	1	0	1	1	1	1	R15	Cursor (L)		Νo	Yes			Γ	1		Г		

TABLE 1 - INTERNAL REGISTER ASSIGNMENT

NOTES

- 1 The Interlace Control is shown in Table 2 while Skew Control is shown in Table 3
- 2. Bit 5 of the Cursor Start Raster Register is used to blink period control, and Bit 6 is used to select blink or non-blink
- 3 RO-R11 are mask-programmable and are not accessible via the data bus

mask programmable register file, R0-R11. For horizontal timing generation, comparisons result in:

- Horizontal sync pulse (HS) of a frequency, position and width determined by the register contents
- 2 Horizontal Display signal of a frequency, position and duration determined by the register contents

The horizontal counter produces H clock which drives the Scan Line Counter and Vertical Control. The contents of the Raster Counter are continuously compared to the Max Scan Line Address Register. A coincidence resets the Raster Counter and clocks the Vertical Counter.

Comparisons of Vertical Counter contents and Vertical Registers result in:

- 1 Vertical sync pulse (VS) of a frequency, position and width determined by the register contents
- Vertical Display signal of a frequency, position, and duration determined by the register contents

The Vertical Control Logic has other functions:

- 1 Generate row selects, RAO-RA4, from the Raster Count for the corresponding interlace or non-interlace modes.
- Extend the number of scan lines in the vertical total by the amount programmed in the Vertical Total Adjust Register

The cursor logic determines the size and blink rate of the

cursor as indicated by the register contents

The Linear Address Generator is driven by CLK and locates the relative positions of characters in memory and their positions on the screen Fourteen outputs, MA0-MA13, are available for addressing up to four pages of 4K characters, etc.

Five additional write-only registers define the Start Address and cursor position. Using the Start Address Register, hardware scrolling through 16K characters is possible. The Linear Address Generator repeats the same sequence of addresses for each scan line of a character row. The Start Address Register and the Cursor Position Register are programmed by the processor through the data bus, D0-D7 and the control signals $-\overline{W}$, \overline{CS} , RS, and E. Refer to Figure 9

REGISTER FILE DESCRIPTION

The MC6835 has 17 control registers of which 12 are mask programmable. The remaining five registers — Address register, Start Address register pair, and Cursor Position register pair — are write-only registers programmed by the MPU. These registers control horizontal timing, vertical timing, interlace operation, row address operation and define the cursor, cursor address, and start address. The register addresses and sizes are shown in Table 1.

MASK PROGRAMMABLE REGISTERS RO-R11

The twelve mask programmable registers determine the display format generated by the MC6835. The PROG input is used to select one of two sets of register values.

Figure 10 shows the visible display area of a typical CRT monitor giving the point of reference for horizontal registers as the left most displayed character position. Horizontal registers are programmed in character clock time units with respect to the reference as shown in Figure 11. The point of reference for the vertical registers is the top character position displayed. Vertical registers are programmed in character row times or scan line times as shown in Figure 12.

Horizontal Total Register (R0) — This 8-bit register determines the horizontal sync (HS) frequency by defining the HS period in character times. It is the total of the displayed characters plus the non-displayed character times (retrace) minus one.

Horizontal Displayed Register (R1) — This 8-bit register determines the number of displayed characters per line. Any 8-bit number may be programmed as long as the contents of R0 are greater than the contents of R1.

Horizontal Sync Position Register (R2) — This 8-bit register controls the HS position. The horizontal sync position defines the horizontal sync delay (Front Porch) and the horizontal scan delay (Back Porch). When the programmed value of this register is increased, the display on the CRT screen is shifted to the left. When the programmed value is

decreased the display is shifted to the right. Any 8-bit number may be programmed as long as the sum of the contents of R1, R2, and the lower four bits of R3 are less than the contents of R0.

Sync Width Register (R3) — This 8-bit register determines the width of the vertical sync (VSI) pulse and the horizontal sync (HSI) pulse Programming the upper four bits for 1-to-15 will select VS pulse widths from 1-to-15 scan-line times. Programming the upper four bits as zeros will select a VS pulse width of 16 scan line times. The HS pulse width may be programmed from 1-to-15 character clock periods thus allowing compatibility with the HS pulse width specifications of many different monitors. If zeros are written into the lower four bits of this register, then no HS is provided.

Horizontal Timing Summary (Figure 11) — The difference between R0 and R1 is the horizontal blanking interval. This interval in the horizontal scan period allows the beam to return (retrace) to the left side of the screen. The retrace time is determined by the monitor's horizontal scan components. Retrace time is less than the horizontal blanking interval. A good rule of thumb is to make the horizontal blanking about 20% of the total horizontal scanning period for a CRT. In inexpensive TV receivers, the beam overscans the display screen so that aging of parts does not result in underscanning Because of this, the retrace time should be about 1/3 the horizontal scanning period. The horizontal sync delay, HS pulse width and horizontal scan delay are typically programmed with 1:2:2 ratio.

FIGURE 10 - ILLUSTRATION OF THE CRT SCREEN FORMAT

NOTE 1: Timing values are described in Table 8

FIGURE 11 — CRTC HORIZONTAL TIMING

*Timing is shown for first displayed scan row only. See Chart in Figure 15 for other rows. The initial MA is determined by the contents of Start Address Register, R12/R13. Timing is shown for R12/R13=0.

NOTE 1: Timing values are described in Table 5.

TABLE 2 - INTERLACE MODE REGISTER

Bit 1	Bit 0	Mode
0	0	Normal Sync Mode (Non-Interlace)
1	0	Normal Sync Widde Hadn-Interface)
0	1	Interlace Sync Mode
1	1	Interlace Sync and Video Mode

TABLE 3 - CURSOR START REGISTER

Bit 6	Bit 5	Cursor Display Mode
0	0	Non-Blink
0	1	Cursor Non-Display
1	0	Blink 1/16 Field Rate
1	3	Blink, 1/32 Field Rate

FIGURE 13 - INTERLACE CONTROL

Vertical Total Register (R4) and Vertical Total Adjust Register (R5) — The frequency of VS is determined by both R4 and R5. The calculated number of character line times is usually an integer plus a fraction to get exactly a 50 or 60 Hz vertical refresh rate. The integer number of character line times minus one is programmed in the 7-bit Vertical Total Register (R4). The fraction of character line times is programmed in the 5-bit Vertical Total Adjust Register (R5) as a number of scan line times.

Vertical Displayed Register (R6) — This 7-bit register specifies the number of displayed character rows on the CRT screen. and is programmed in character row times. Any number smaller than the contents of R4 may be programmed into R6.

Vertical Sync Position (R7) — This 7-bit register controls the position of vertical sync with respect to the reference. It is programmed in character row times. The value programmed in the register is one less than the number of computed character line times. When the programmed value of this register is increased, the display position of the CRT screen is shifted up. When the programmed value is decreased the display position is shifted down. Any number equal to or less than the vertical total (R4) may be used.

Interlace Mode and Skew Register (R8) — This 6-bit register controls the interlace modes and allows a programmable delay of zero to two character clock times for the DE (display enable) and Cursor outputs Table 2 shows the interlace modes available to the user. These modes are selected using the two low order bits of this 6-bit register.

Table 4 describes operation of the Cursor and DE skew bits Cursor skew is controlled by bits 6 and 7 of R8 while DE skew is controlled by bits 4 and 5

In the normal sync mode (non-interlace) only one field is available as shown in Figure 5 and 13a. Each scan line is refreshed at the VS frequency (e.g., 50 or 60 Hz)

Two interlace modes are available as shown in Figures 6. 13b. and 13c. The frame time is divided between even and odd alternating fields. The horizontal and vertical timing relationship (VS delayed by 1/2 scan line time) results in the displacement of scan lines in the odd field with respect to the even field.

In the Interlace Sync mode the same information is painted in both fields as shown in Figure 13b. This is a useful mode for filling in a character to enhance readability

In the Interlace Sync and Video mode alternating lines of the character are displayed in the even field and the odd field This effectively doubles the number of characters that may be displayed on a CRT monitor of a given bandwidth

Care must be taken when using either interlace mode to avoid an apparent flicker effect. This flicker effect is due to the doubling of the refresh period for all scan lines since each field is displayed alternately. Flicker may be minimized with proper monitor design (e.g., longer persistence phosphors). In addition, there are restrictions on the street entering.

In addition, there are restrictions on the programming of the CRTC registers for interlace operation:

- a The Horizontal Total Register value. R0. must be odd (i.e., an even number of character times)
 - For the Interlace Sync and Video mode only, the Vertical Displayed Register (R6) must be even. The programmed number, Nvd. must be ½ the actual number required.

TABLE 4 - CURSOR AND DE SKEW CONTROL

Value	Skew
00	No Character Skew
01	One Character Skew
10	Two Character Skew
11	Not Available

Maximum Scan Line Address Register (R9) — This 5-bit register determines the number of scan lines per character row including the spacing thus controlling operation of the Row Address counter. The programmed value is a maximum address and is one less than the number of scan lines.

Cursor Start Register (R10) and Cursor End Register (R11)

These registers allow a cursor of up to 32 scan lines in heapt to be placed on any scan line of the character block as shown in Figure 14. R18 s.a.? Intrograte used to define the start scan line and blink rate for the cursor. Bits 5 and 6 of the Cursor Start Address Register control the cursor operation as shown in Table 4. Non-display, display and two blink modes (16 times or 32 times the field period) are available R11 is a 5-bit register which defines the last scan line of the cursor.

When an external blink feature on characters is required, it may be necessary to perform cursor blink externally so that both blink rates are synchronized. Note that an invert/nonivert cursor is easily implemented by programming the CRTC for a blinking cursor and externally inverting the video signal with an exclusive-OR gate.

PROGRAMMABLE REGISTERS

The four programmable registers allow the MPU to posi-

tion the cursor anywhere on the screen and allow the start address to be modified

The Address Register is a five-bit write-only register used as an "indirect" or "pointer" register. Its contents are the address of one of the other 18 registers. When both RS and CS are low, the Address Register is selected. When CS is low and RS is high, the register pointed to by the Address Register is selected.

Start Address Register (R12-H, R13-L) — This 14-bit write-only register pair controls the first address output by the CRTC after vertical blanking. It consists of an 8-bit low order (MA0-MA7) register and a 6-bit high order (MA8-MA13) register. The start address register determines which portion of the refresh RAM is displayed on the CRT screen Hardware scrolling by character, line or page may be accomplished by modifying the contents of this register.

Cursor Register (R14-H, R15-L) — This 14-bit write-only register pair is programmed to position the cursor anywhere in the reflesh RAM area thus allowing hardware paging and scrolling through memory without loss of the original cursor position. It consists of an 8-bit low order (MA0-MA7) register and a 6-bit high order (MA8-MA13) register.

CRTC INITIALIZATION

Registers R12-R15 must be initialized after the system is powered up. The processor will normally load the CRTC register file from a firmware table. Figure 15 shows an M6800 program which could be used to program the CRT Controller.

FIGURE 14 - CURSOR CONTROL

ADDITIONAL CRTC APPLICATIONS

The foremost system function which may be performed by the CRTC controller is the refreshing of dynamic RAM. This is quite simple as the refresh addresses continually run

Both the VS and the HS outputs may be used as a real time clock. Once programmed, the CRTC will provide a stable reference frequency.

SELECTING MASK PROGRAMMED REGISTER VALUES

A prototype system may be developed using the MC6845 CRTC. This will allow register values to be modified as re-

quired to meet system specifications. The worksheet of Table 5 is extremely useful in computing proper register values for the MC6835. The program shown in Figure 15 may be expanded to properly load the calculated register values in the MC6845. Once the two sets of register values have been developed. Itil out the ROM program worksheet of Figure 18.

To order a custom programmed MC6835, contact your local field service office, local sales person or your local Motorola representative. A manufacturing mask will be developed for the data entered in Figure 18.

FIGURE 15 - M6800 PROGRAM FOR CRTC INITIALIZATION

PAGE 001 CRTCINIT.SA:1 MC6835 CRTC initialization program

aaaan NAM MC6835 00002 TTL CRTC initialization program G,S,LLE=85 print FCB'x, FDB's & XREF table аааааз OPT 00004 ******* aaaas * Assign CRTC address 00006 00007 9000 A CRTCAD EQU \$9000 Address Register aaaaa 9001 A CRTCRG EQU CRTCAD+1 Data Register 00009 00010 * Initialization Program 00011 00012A 0000 ORG a place to start 00013A 0000 C6 0C Α LDAB ŚС initialize pointer 00014A 0002 CE 1020 38RTTAB Α LDX table pointer 00015A 0005 F7 9000 A CRTC1 STAB CRTCAD load address register 00016A 0008 A6 ØØ Α LDAA get register value from table Ø,X 00017A 000A B7 9001 CRTCRG Α STAA program register 00018A 000D 08 INX increment counter 00019A 000E 5C INCB 00020A 000F D1 10 CMPR \$10 finished? 00021A 0011 26 F2 0005 BNE CRTCl no: take branch 00022A 0013 3F SWI yes: call monitor 00023 ****** ********** * CRTC register initialization table 00024 00025

\$1020

\$0080

\$0080

start of table

R12, R13 - Start Address

R14, R15 - Cursor Address

CRTC1 0005 CRTCAD 9000 CRTCRG 9001 CRTTAB 1020

A CRTTAB FDB

ORG

FDB

END

0080

0080 A

TOTAL ERRORS 00000--00000

00026A 1020

ØØØ27A 1Ø2Ø

ØØØ28A 1Ø22

00029

TABLE 5 — CRTC FORMAT WORKSHEET

	Hex	ar annual				***************************************		and the second s		-									
	Decimal																		
CHIC registers		R0 Honzontal Total (Line 15 - 1)	R1 Honzontal Displayed (Line 1)	R2 Honzontal Sync Position (Lini- 1 + Line 12)	R3 Honzontal Sync Width (Line :3)	94 Verical Total (Line 9 - 1)	R5 Vertical Adjust (Line 9 Lines)	R6 Vertical Displayed (Line 2)	R7 Vertical Sync Position (Line 2 + Line 10)	R8 Interface (00 Normal, 01 Inter ace.	03 Interface, and Video)	R9 Max Scan Line Add (Line 4b - 1)	R10 Cursor Start	R11 Cursor End	R12, R13 Start Address IH and L)	R14, R15 Cursor (H and U)			
	Char	Rows	Columns	Rows	Columns	Rows	Hz	ΗZ	Lines	Lines	and times	Rows	Lines	Char Times	Chur. Times	Char. Times	Char. Times	Hz	H ₂
eet											Rows								
Display Format Worksheat	1. Displayed Characters per Row	2. Displayed Character Rows per Screen	3 Character Matrix a. Columns	b. Rows	4 Character Block a. Columns	b. Rows	5. Frame Refresh Rate	Horizontal Oscillator Frequency	7. Active Scan Lines (Line 2× Line 4b)	8. Total Scan Lines (Line 6 - Line 5)	 Total Rows Per Screen (Line 8 – Line 4b) 	10. Vertical Sync Delay (Char. Rows)	11. Vertical Sync Width (Scan Lines (16))	12 Horizontal Sync Delay (Character Times)	13. Horizontal Sync Width (Character Times)	14 Honzontal Scan Delay (Character Times)	15 Total Character Times (Line 1+12+13+14)	16 Character Rate (Line 6 x 15)	17 Doi Clock Rate (Line 4a x 16)

TABLE 6 - WORKSHEET FOR 80 x 24 FORMAT

11 1 10 10 10 10 10 10 10 10 10 10 10 10		j	Yack	65	99	26	6	18	0.0	18	18	0		89	0	8	8	80	8	80	
Reference Refe		Decima		101	80	98	6	27	2	24	24			10	0	11	128		128		
Keheet 80 80 24 7 7 7 111 860 284 284 284 28 80 810 810 810 810 810 810 810 810 810	CRTC Registers			R0 Horizontal Total (Line 15 minus 1)	R1 Horizontal Displayed (Line 1)	R2 Horizontal Sync Position (Line 1+ Line 12)	R3 Honzontal Sync Width (Line 13)	R4 Vertical Total (Line 9 minus 1)	R5 Vertical Adjust (Line 9 Lines)	R6 Vertical Displayed (Line 2)	R7 Vertical Sync Position (Line 2+ Line 10)	RB Interface (00 Normal, 01 Interface.	03 Interface, and Video)	R9 Max Scan Line Add (Line 4b minus 1)	R10 Cursor Start	R11 Cursor End	R12, R13 Start Address (H and L)		R14, R15 Cursor (H and L)		
Display Format Works splayed Characters per Row haracter Maurx a. Columns haracter Maurx a. Columns b. Rows b. Rows b. Rows b. Rows b. Rows a. Columns b. Rows and Refresh Rate b. Rows contail Oscillator Frequency cuve Scon Lues Lune 2 x. Line 4b) and Scon Lues Scon Lues Character Lune 9 - Lue 4b) and Scon Ches Character Character Tunes on zontal Sync Delay (Character Tunes) proontal Sync Delay (Character Tunes) and Character Tunes in the Atlanta In In Character Tunes in the Atlanta In	sheet				9 Bows		11 Rows		١		1	28 Rows and 2 Lines	Rows				7 Char. Times	1	ı	17.075 M MHz	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Display Format Work	 Displayed Characters per Row 	 Displayed Character Rows per Screen 	Character Matrix		4. Character Block a. Columns	b. Rows	5. Frame Refresh Rate	 Horizontal Oscillator Frequency 	7. Active Scan Lines (Line 2 x Line 4b)	8. Total Scan Lines (Line 6 - Line 5)	 Total Bows Per Screen (Line 8 – Line 4b) 	 Vertical Sync Delay (Char Rows) 	11. Vertical Sync Width (Scan Lines (16))	2 Horizontal Sync Delay (Character Times)	3. Horizontal Sync Width (Character Times)	4 Horizontal Scan Delay (Character Times)	15. Total Character Times (Line 1+12+13+14)	 Character Rate (Line 6 times 15) 	17. Dot Clock Rate (Line 4a times 16)	

OPERATION OF THE CRTC

Timing of the CRT Interface Signals — Timing charts of CRT interface signals are illustrated in this section with the aid of programmed example of the CRTC When values listed in Table 7 are programmed into CRTC control registers, the device provides the outputs as shown in the Timing Diagrams (Figures 11, 12, 16, and 17). The screen

format of this example is shown in Figure 10. Figure 17 is an illustration of the relation between Refresh Memory Address (MAO-MA13). Raster Address (RAO-RA4) and the position on the screen. In this example, the start address is assumed to be "0".

TABLE 7 - VALUES PROGRAMMED INTO CRTC REGISTERS

Register Number	Register Name	Value	Programmed Value
R0	H. Total	N _{ht} + 1	Nht
R1	H. Displayed	N _{hd}	Nhd
R2	H. Sync Position	N _{hsp}	Nhsp
ПЗ	H Sync Width	Nhaw	Nhsw
R4	V. Total	N _{vt} + 1	N _{vt}
R5	V. Scan Line Adjust	Nadj	Nadj
R6	V. Displayed	N _{vd}	N _{vd}
R7	V. Sync Position	N _{vsp}	N _{vsp}
R8	Interlace Mode		
R9	Max. Scan Line Address	N _{sl}	N _{SI}
R10	Cursor Start		
R11	Cursor End		
R12	Start Address (H)	0	
R13	Start Address (L)	0	
R14	Cursor (H)		
R15	Cursor (L)		

• Truning is shown for non-intelace and interlace sync modes.

Example shown has cursor programmed as:

Cursor Register = Nhd + 2

Cursor Stati = 1

Cursor Stati = 1

Cursor End = 3

Cursor End = 3

• The initial MA is determined by the contents of Start Address Register, R12,R13 Timing is shown for R12:R13=0

NOTE I: Timing values are described in Table 8.

<u>M</u>) n

FIGURE 18 - ROM PROGRAM WORKSHEET

The value in each register of the MC6845 should be entered without any modifications. Motorola will take care of translating into the appropriate format

All numbers are in decimal	All numbers are in hex
----------------------------	------------------------

	ROM Program Zero (PROG = 0)	ROM Program One (PROG = 1)
R0	***************************************	
R1		
R2		
R3		
R4		····
R5		***************************************
R6	***************************************	
R7		
88		
R9		
R10		***************************************
B11		

ORDERING INFORMATION

Package Type	Frequency (MHz)	Temperature	Order Number
Ceramic	10	0°C to 70°C	MC6835L
L Suffix	10	-50°C to 85°C	MC6835CL
	15	0°C to 70°C	MC68A35L
	1 5	-50°C to 85°C	MC68A35CL
	20	0°C to 70°C	MC68B35L
	2.0	50°C to 85°C	MC68B35CL
Cerdip	10	0°C to 70°C	MC6835S
S Suffix	10	~50°C to 85°C	MC6835CS
	15	0°C to 70°C	MC68A35S
	1.5	-50°C to 85°C	MC68A35CS
	20	0°C to 70°C	MC68B35S
	2.0	- 50°C to 85°C	MC68B35CS
Plastic	10	0°C to 70°C	MC6835P
P Suffix	10	- 50°C to 85°C	MC6835CP
	15	0°C to 70°C	MC68A35P
	15	- 50°C to 85°C	MC68A35CP
	20	0°C to 70°C	MC68B35P
	2.0	- 50°C to 85°C	MC68B35CP

PACKAGE DIMENSIONS

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

MOTOROLA Semiconductor Products Inc.

WESTERN DIGITAL

BR1941(5016) Dual Baud Rate Clock

FEATURES

- . 16 SELECTABLE BAUD RATE CLOCK FREQUENCIES
- SELECTABLE 1X, 16X OR 32X CLOCK OUTPUTS FOR FULL DUPLEX OPERATIONS
- OPERATES WITH CRYSTAL OSCILLATOR OR EXTERNALLY GENERATED FREQUENCY INPUT
- ROM MASKABLE FOR NON-STANDARD FREQUENCY SELECTIONS
- . INTERFACES EASILY WITH MICROCOMPUTERS
- OUTPUTS A 50% DUTY CYCLE CLOCK WITH 0 01% ACCURACY
- 6 DIFFERENT FREQUENCY/DIVISOR PAIRS AVAILABLE
- . TTL, MOS COMPATIBILITY
- PIN COMPATIBLE WITH COM5016

GENERAL DESCRIPTION

The BR1941 is a combination Baud Rate Clock Generator and Programmable Divider. It is manufactured in N-channel MOS using silicon gate technology. This device is capable of generating 16 externally selected clock rates whose frequency is determined by either a single crystal or an externally generated input clock. The BR1941 is a programmable counter capable of generating a division from 2 to (2¹⁵ – 1)

The BR1941 is available programmed with the most used frequencies in data communication. Each frequency is selectable by strobing or hard wiring each of the two sets of four Rate Select inputs. Other frequencies/division rates can be generated by reprogramming the internal ROM coding through a MOS mask change. Additionally, further clock division may be accomplished through cascading of devices. The frequency output is fed into the XTAL/EXT input on a subsequent device.

BR1941 BLOCK DIAGRAM

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME	FUNCTION
1	XTAL/EXT 1	Crystal or External Input 1	This input receives one pin of the crystal package or one polarity of the external input.
2	VCC	Power Supply	+5 volt Supply
3	fR	Receiver Output Frequency	This output runs at a frequency selected by the Receiver Address inputs.
4-7	R _A , R _B , R _C , R _D	Receiver Address	The logic level on these inputs as shown in Tables 1 through 6, selects the receiver output frequency, f _R .
8	STR	Strobe-Receiver Address	A high-level input strobe loads the receiver address (RA, RB, RC, RD) into the receiver address register. This input may be strobed or hard wired to +5V.
9	v_{DD}	Power Supply	+ 12 voit Supply
10	NC	No Connection	Internally bonded Do not connect anything to this pin.
11	GND	Ground	Ground
12	STT	Strobe-Transmitter Address	A high-level input strobe loads the transmitter address (TA, TB, TC, TD) into the transmitter address register. This input may be strobed or hard wired to +5V.
13-16	TD, TC, TB, TA	Transmitter Address	The logic level on these inputs, as shown in Tables 1 through 6, selects the transmitter output frequency, f _T
17	f _T	Transmitter Output Frequency	This output runs at a frequency selected by the Transmitter Address inputs
18	XTAL/EXT 2	Crystal or External Input 2	This input receives the other pin of the crystal package or the other polarity of the external input
	I	i	

CONTROL TIMING

CRYSTAL OPERATION BR1941 EXTERNAL INPUT OPERATION BR1941 5 0688 MHz IOLCRYSTAL 74XX - TOTEM POLE OR OPEN COLLECTOR OUTPUT

CRYSTAL/CLOCK OPTIONS

ABSOLUTE MAXIMUM RATINGS

Positive Voltage on any Pin, with respect to ground Negative Voltage on any Pin, with respect to ground

Storage Temperature

+20.0V -0.3V

(plastic package) - 55°C to +125°C (cerdip package and ceramic package) - 65°C to +150°C

Lead Temperature (Soldering, 10 sec)

+325°C

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and Functional Operation of the device at these or at any other condition above those indicated in the operational sections of this specification are not implied

ELECTRICAL CHARACTERISTICS

 $(T_A = 0^{\circ}C \text{ to } + 70^{\circ}C, V_{CC} = +5V \pm 5\%, V_{DD} = +12V \pm 5\%, \text{ unless otherwise noted})$

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
DC CHARACTERISTICS					
INPUT VOLTAGE LEVELS Low-level, V _{IL} High-level, V _{IH}	V _{CC} 1.5		0.8 VCC	V V	See Note 1
OUTPUT VOLTAGE LEVELS Low-level, VOL High-level, VOH	V _{CC} -15	4.0	0.4	V	I _{OL} = 32 mA I _{OH} = 100µA
INPUT CURRENT Low-level, I _{IL}			0.3	mA	V _{IN} = GND, excluding XTAL inputs
INPUT CAPACITANCE All Inputs, C _{IN}		5	10	pf	V _{IN} = GND, excluding XTAL inputs
INPUT RESISTANCE Crystal Input, R _{XTAL}	1.1			ΚΩ	Resistance to ground for Pin 1 and Pin 18
POWER SUPPLY CURRENT ICC IDD		20 20	60 70	mA mA	
AC CHARACTERISTICS					$T_A = +25^{\circ}C$
CLOCK FREQUENCY					See Note 2
PULSE WIDTH (TPW) Clock Receiver strobe Transmitter strobe	150 150		DC DC	ns ns	50% duty cycle ± 10%. See Note 2
INPUT SET-UP TIME (TSET-UP) Address	50	-		ns	See Note 3
OUTPUT HOLD TIME (THOLD) Address	50			ns	

NOTE 1: BR1941 - XTAL/EXT inputs are either TTL compatible or crystal compatible. See crystal specification in Ap-

plications Information section.

All inputs except XTAL/EXT have internal pull-up resistors.

NOTE 2: Refer to frequency option tables for maximum input frequency on XTAL/EXT pins.

Typical Clock Pulse width is 1/2xCL

NOTE 3: Input set-up time can be decreased to ≥0 ns by increasing the minimum strobe width by 50 ns to a total of 200 ns.

OPERATION

Standard Frequencies

Choose a Transmitter and Receiver frequency from the table below. Program the corresponding address into TA-TD and RA-RD respectively using strobe pulses or by hard wiring the strobe and address inputs

Non-Standard Frequencies

To accomplish non-standard frequencies do one of the following:

- Choose a crystal that when divided by the BR1941 generates the desired frequency.
- 2 Cascade devices by using the frequency outputs as an

input to the XTAL/EXT inputs of the subsequent BR1941.

3 Consult the factory for possible changes via ROM mask reprogramming.

FREQUENCY OPTIONS

TABLE 1 CRYSTAL FREQUENCY = 50688 MHZ

		t/Receive tress		Baud Rate	Theoretical	Actual	Percent	Duty Cycle	
D	С	8	Α	(16X Clock)	Freq. (kHz)	Freq. (kHz)	Error	%	Divisor
0	0	0	0	50	0.8	0.8	_	50/50	6336
ŏ	l ŏ l	0	1	75	1,2	1.2		50/50	4224
ŏ	ŏ	i	0	110	1.76	1.76		50/50	2880
ŏ	0	1	1	134.5	2.152	2.1523	0 0 1 6	50/50	2355
ő	1	Ó	0	150	2 4	2 4		50/50	2112
ő	1 1	ō	1	300	4.8	48	_	50/50	1056
ő	i	1	0	600	9.6	9.6	****	50/50	528
ñ	i	1	1	1200	19 2	19 2	****	50/50	264
ĭ	1 0	0	0	1800	28 8	28.8	_	50/50	176
i	l o	ō	1	2000	32 0	32.081	0 253	50/50	158
i	Ŏ	1	0	2400	38 4	38 4		50/50	132
i	ő	1	1	3600	57 6	57 6	_	50/50	88
1	1	0	0	4800	76.8	76.8	-	50/50	66
i	l i	ا ٥	l i	7200	115.2	115 2	_	50/50	44
i	1 1	i i	iυ	9600	153 6	153 6		46/52	33
í	1 1	1	1	19,200	307.2	316.8	3.125	50/50	16

BR1941-00

TABLE 2 CLOCK FREQUENCY = 276480 MHZ

		t/Receive ress		Baud Rate	Theoretical	Actual	Percent	Duty Cycle	
D	С	В	Α	(16X Clock)	Freg. (kHz)	Freq. (kHz)	Error	%	Divisor
0	0	0	0	50	0.8	0.8	_	50/50	3456
ő	l ň l	n	1	75	1,2	1.2		50/50	2304
ő	ŏ	1	0	110	1.76	1.76	- 0.006	50/50	1571
Ö	ň	1	ì	134.5	2.152	2.152	-0019	50/50	1285
ő	1	ń	Ó	150	2 4	2 4		50/50	1152
0		Ŏ	1	200	3 2	3 2	_	50/50	864
ā		1	ń	300	4.8	4.8	-	50/50	576
n		i	1	600	9.6	9.6	***	50/50	288
1	ا أ	ó	n	1200	19 2	19 2	_	50/50	144
;	0	ľ	l ĭ	1800	28 8	28.8	-	50/50	96
;	0	1	l ó	2000	32 0	32.15	+ 0 465	50/50	86
4	ľ	;	1	2400	38 4	38 4	_	50/50	72
1	1 4	i	ا أ	3600	57.6	57 6	mm.	50/50	48
<u> </u>		ő	1 1	4800	76.8	76.8		50/50	36
;		1 1	ا أ	9600	153 6	153 6	-	50/50	18
	1 ;		l ĭ	19.200	307.2	307.2	_	50/50	9

BR1941-02

TABLE 3 CRYSTAL FREQUENCY = 6.018305 MHZ

	Transmit Add			Baud Rate	Theoretical	Actual	Percent	Duty Cycle	
D	С	В	Α	(16X Clock)	Freq. (kHz)	Freq. (kHz)	Error	%	Divisor
0	0	0	0	50	0.8	.7999	0	50/50	7523*
Ö	ň	ň	1	75	1.2	1.2000	0	50/50	5015*
Ö	l ň	i	Ó	110	1.76	1.7597	0	50/50	3420
ő	0	1	1	134.5	2,152	2 1517	0	50/50	2797*
Ö	1 1	Ò	Ó	150	2 4	2 3996	0	50/50	2508
ŏ	1 ;	ň	1	200	3 2	3.1995	0	50/50	1881*
ő	1 1	1	0	300	4.8	4.7993	0	50/50	1254
ő	1 1	i	ĭ	600	9.6	9.5986	0	50/50	627*
1	ه ا	i i	Ó	1200	19 2	19 2279	+ 0.14	50/50	31.3*
- 1	l ŏ	Ŏ	1	1800	28 8	28 7959	0	50/50	209
1	l ň	1	Ó	2000	32 0	32 0125	0	50/50	188
i	1 0	1	l i	2400	38.4	38.3334	- 0 17	50/50	157*
i	1 1	Ιó	Ó	3600	57 6	57 8687	+ 0.46	50/50	104
1	l i	ا آ	l í	4800	76.8	77.1583	+ 0.46	50/50	78
i	1 1	1 1	Ó	9800	153 6	154 3166	+ 0.46	50/50	39.
i	i	l i	ì	19,200	307.2	300.9175	~ 2.04	50/50	20

BR1941-03

TABLE 4. CLOCK FREQUENCY = 5.52960 MHZ

		t/Receive Iress		Baud Rate	Theoretical	Actual	Percent	Duty	
D	С	В	Α	(16X Clock)	Freq. (kHz)	Freq. (kHz)	Error	Cycle %	Divisor
0	0	0	0	50	1.6	16	_	50/50	3456
0	0	0	1	76	2.4	2.4	_	50/50	2304
0	0	1	0	110	3.52	3.52	- 0 006	50/50	1571
0	0	1	1	134.5	4 304	4 303	- 0.019	50/50	1285
0	1	0	0	150	4.8	48	_	50/50	1152
0	1	0	1	200	6.4	6.4	_	50/50	864
0	1	1	0	300	9.6	9.6		50/50	576
0	1	1	1	600	19.2	19.2	_	50/50	288
1	0	0	0	1200	38 4	38 4	_	50/50	144
1	0	0	1	1800	57 6	57.6	_	50/50	96
1	0	1	0	2000	64 0	64.3	+ 0.465	50/50	86
1	0	1	1	2400	76.8	76.8	_	50/50	72
1	1	0	0	3600	115.2	115 2		50/50	48
1 1	1	0	1	4800	153 6	153 6		50/50	36
1	1	1	0	9600	307.2	307.2	****	50/50	18
11	1	1	1	19,200	614.4	614.4		50/50	9

BR1941-04

TABLE 5. CRYSTAL FREQUENCY = 4.9152 MHZ

	Transmit Addı			Baud Rate	Theoretical	Actual	Percent	Duty Cycle	
D	С	В	A	(32X Clock)	Freq. (kHz)	Freq. (kHz)	Error	%	Divisor
0	0	0	0	50	0.8	0.8		50/50	6144
0	0	0	1	75	1.2	1.2	_	50/50	4096
0	0	1	0	110	1 76	1.7598	-001	•	2793
0	0	1	1	134.5	2.152	2.152		50/50	2284
0	1	0	0	150	2 4	2.4	_	50/50	2048
0	1	0	1	300	4.8	4.8	_	50/50	1024
0	1	1	0	600	9.6	9.6	_	50/50	512
0	1	1	1	1200	19.2	19.2	_	50/50	256
1	0	0	0	1800	28 8	28.7438	-0.19		171
1	0	0	1	2000	32.0	31.9168	- 0 26	50/50	154
1	0	1	0	2400	38.4	38.4		50/50	128
1	0	1	1	3600	57.6	57.8258	0.39	30/30	85
1	1	0	0	4800	76.8	76.8	0.00	50/50	64
1	1	0	1	7200	115.2	114.306	- 0 77	*	43
1	1	1	0	9600	153.6	153.6	<u> </u>	50/50	32
1	1	1	1	19,200	307.2	307.2		50/50	16

BR1941-05

TABLE 6. CRYSTAL FREQUENCY = 5.0688 MHZ

	Transmit/Receive Address			Baud Rate Theoretical	Actual	Percent	Duty		
D	С	В	A	(32X Clock)	Freq. (kHz)	Freq. (kHz)	Error	Cycle %	Divisor
0	0	0	0	50	1.6	1.6		50/50	3168
0	0	0	1	75	2.4	2.4		50/50	2112
0	0	1	0	110	3.52	3.52		50/50	1440
0	0	1	1	134.5	4 304	4.303	026	50/50	1178
0	1	0	0	150	4.8	48		50/50	1056
0	1	0	1	200	6.4	6.4		50/50	792
0	1	1	0	300	9.6	9.6	_	50/50	528
0	1	1	1	600	19 2	19.2	_	50/50	264
1	0	0	0	1200	38.4	38 4		50/50	132
1	0	0	1	1800	57 6	57 6	_	50/50	88
1	0	1	0	2400	76.8	76.8		50/50	66
1	0	1	1	3600	115 2	115.2	_	50/50	44
1	1	0	0	4800	153 6	153.6	_	•	33
1	1	0	1 1	7200	230 4	230 4		50/50	22
1	1 1	1	0	9600	307.2	298.16	2.941		17
. 1	1	1	1	19,200	614.4	633.6	3.125	50/50	8

*When the duty cycle is not exactly 50% it is 50% ± 10%

BR1941-06

CRYSTAL SPECIFICATIONS

User must specify termination (pin, wire, other) Frequency — See Tables 1-6. Temperature range 0°C to + 70°C Series resistance ≤ 50Ω Series resonant Overall tolerance ± .01%

CRYSTAL MANUFACTURERS (Partial List)

American Time Products Div. Frequency Control Products, Inc. 61-20 Woodside Ave. Woodside, New York 11377 (212) 458-5811 Bliley Electric Co. 2545 Grandview Blvd Erie, Pennsylvania 16508 (814) 838-3571

M-tron Ind. Inc. P.O. Box 630 Yankton, South Dakota 57078 (605) 665-9321

Erie Frequency Control 453 Lincoln St Calisle, Pennsylvania 17013 (714) 249-2232

APPLICATIONS INFORMATION

OPERATION WITH A CRYSTAL

The BR1941 Baud Rate Generator may be driven by either a crystal or TTL level clock. When using a crystal, the waveform that appears at pins 1 (XTAL/EXT 1) and 18 (XTAL/EXT 2) does not conform to the normal TTL limits of V_{IL} \leq 0.8V and V_{IH} \geq 2.0V. Figure 1 illustrates a typical crystal waveform when connected to a BR1941.

Since the D.C level of the waveform causes the least positive point to typically be greater than 0.8V, the BR1941 is designed to look for an edge, as opposed to a TTL level. The XTAL/EXT logic triggers on a rising edge of typically 1V in magnitude. This allows the use of a crystal without any additional components.

OPERATIONS WITH TTL LEVEL CLOCK

With clock frequencies in the area of 5 MHz, significant overshoot and undershoot ("iniging") can appear at pins 1 and/or 18. The BR1941, may, at times, be triggered on a rising edge of an overshoot or undershoot waveform, causing the device to effectively "double-trigger". This phenomenon may result as a twice expected baud rate, or as an apparent device failure. Figure 2 shows a typical waveform that exhibits the "ringing" problem.

The design methods required to minimize ringing include the following:

- Minimize the P.C. trace length. At 5 MHz, each inch of trace can add significantly to overshoot and undershoot.
- Match impedances at both ends of the trace For example, a series resistor near the BR1941 may be helpful
- A uniform impedance is important. This can be accomplished through the use of:

- a. parallel ground lines
- evenly spaced ground lines crossing the trace on the opposite side of PC board
- an inner plane of ground, e.g., as in a four layered PC board

In the event that ringing exists on an already finished board, several techniques can be used to reduce it. These are:

- Add a series resistor to match impedance as shown in Figure 3
- Add pull-up/pull-down resistor to match impedance, as shown in Figure 4.
- 3 Add a high speed diode to clamp undershoot, as shown in Figure 5.

The method that is easiest to implement in many systems is method 1, the series resistor. The series resistor will cause the D.C. level to shift up, but that does not cause a problem since the BR1941 is triggered by an edge, as opposed to a TTL level

The BR1941 Baud Rate Generator can save both board space and cost in a communications system. By choosing either a crystal or a TTL level clock, the user can minimize the logic required to provide baud rate clocks in a given design.

POWER LINE SPIKES

Voltage transients on the AC power line may appear on the DC power output. If this possibility exists, it is suggested that one by-pass capacitor is used between + 5V and GND and another between + 12V and GND.

Figure 1 TYPICAL CRYSTAL WAVEFORM

Figure 2 TYPICAL "RINGING" WAVEFORM

See page 725 for ordering information.

Information furnished by Western Digital Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Western Digital Corporation for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Western Digital Corporation. Western Digital Corporation reserves the right to change specifications at anytime without notice.

WESTERN DIGITAL C O R P O R A T / O N

WD1943(8116)/WD1945(8136) Dual Baud Rate Clock

FEATURES

- 16 SELECTABLE BAUD RATE CLOCK FREQUENCIES
- OPERATES WITH CRYSTAL OSCILLATOR OR EX-TERNALLY GENERATED FREQUENCY INPUT
- ROM MASKABLE FOR NON-STANDARD FREQUENCY SELECTIONS
- INTERFACES EASILY WITH MICROCOMPUTERS
- OUTPUTS A 50% DUTY CYCLE CLOCK WITH 0 01% ACCURACY
- 6 DIFFERENT FREQUENCY/DIVISOR PAIRS AVAILABLE
- SINGLE +5V POWER SUPPLY
- COMPATIBLE WITH BR1941
- TTL, MOS COMPATIBILITY
- WD1943 IS PIN COMPATIBLE TO THE COM8116
- WD1945 IS PIN COMPATIBLE TO THE COM8136 AND COM5036 (PIN 9 ON WD1945 IS A NO CONNECT)

GENERAL DESCRIPTION

The WD1943/45 is an enhanced version of the BR1941 Dual Baud Rate Clock The WD1943/45 is a combination Baud Rate Clock Generator and Programmable Divider It is manufactured in N-channel MOS using silicon gate technology This device is capable of generating 16 externally selected clock rates whose frequency is determined by either a single crystal or an externally generated input clock The WD1943/45 is a programmable counter capable of generating a division by any integer from 4 to 215—1, inclusive.

The WD1943/45 is available programmed with the most used frequencies in data communication. Each frequency is selectable by strobing or hard wiring each of the two sets of four Rate Select inputs. Other frequencies/division rates can be generated by reprogramming the internal ROM coding through a MOS mask change. Additionally, further clock division may be accomplished through cascading of devices. The frequency output is fed into the XTAL/EXT input on a subsequent device.

The WD1943/45 can be driven by an external crystal or by TTL logic.

PIN CONNECTIONS

BLOCK DIAGRAM

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME	FUNCTION
1	XTAL/EXT 1	Crystal or External Input 1	This input receives one pin of the crystal package or one polarity of the external input.
2	Vcc	Power Supply	+ 5 volt Supply
3	fR	Receiver Output Frequency	This output runs at a frequency selected by the Receiver Address inputs
4-7	R _A , R _B , R _C , R _D	Receiver Address	The logic level on these inputs as shown in Table 1 thru 6, selects the receiver output frequency, fg.
8	STR	Strobe-Receiver Address	A high-level input strobe loads the receiver address (RA, RB, RC, RD) into the receiver address register. This input may be strobed or hard wired to ± 50
9	NC	No Connection	No Internal Connection
10	NC (1943) 1/4 (1945)	No Connection freq/4 Output	No Internal Connection XTAL1 input freq divided by four
11	GND	Ground	Ground
12	STT	Strobe-Transmitter Address	A high-level input strobe loads the transmitter address (TA, TB, TC, TD) into the transmitter address register. This input may be strobed or hard wired to +5V.
13-16	TD, TC, TB, TA	Transmitter Address	The logic level on these inputs, as shown in Table 1 thru 6, selects the transmitter output frequency, f _T .
17	fŢ	Transmitter Output Frequency	This output runs at a frequency selected by the Transmitter Address inputs
18	XTAL/EXT 2	Crystal or External Input 2	This input receives the other pin of the crystal package or the other polarity of the external input.

CONTROL TIMING

CRYSTAL/CLOCK OPTIONS

ABSOLUTE MAXIMUM RATINGS

Positive Voltage on any Pin, with respect to ground Negative Voltage on any Pin, with respect to ground

Storage Temperature

(plastic package) -55°C to +125°C

+7.0V

-0.3V

+ 325°C

(Cerdip package and Ceramic package) - 65°C to + 150°C

Lead Temperature (Soldering, 10 sec.)

*Stresses above those listed may cause permanent damage to the device. This is a stress rating only and Functional Operation of the device at these or at any other condition above those indicated in the operational sections of this specification are not implied

ELECTRICAL CHARACTERISTICS (TA = 0°C to +70°C, VCC = +5V ±5% standard)

PARAMETER	MIN	TYP	MAX	UNIT	COMMENTS
DC CHARACTERISTICS					
INPUT VOLTAGE LEVELS Low-level, V _{IL} High-level, V _{IH}	2.0		08 VCC	V	See Note 1
OUTPUT VOLTAGE LEVELS Low-level, V _{OL} High-level, V _{OH}	V _{CC} -1.5	4.0	0.4	V V	I _{OL} = 32 mA I _{OH} = 100µA
INPUT CURRENT High-level, I _{IH} Low-level, I _{IL}			- 10 10 300	μΑ μΑ μΑ	V _{IN} = V _{CC} STR (8) and STT (12) V _{IN} = GND Only V _{IN} = GND (All inputs except XTAL, STR and STT)
Low-level, IIL			10	μа	V _{IN} = GND STR, STT
INPUT CAPACITANCE All Inputs, C _{IN}		5	10	pf	V _{IN} = GND, excluding XTAL inputs
EXT.INPUT LOAD		4	5		Series 7400 unit loads
INPUT RESISTANCE Crystal Input, RXTAL	1.1			ΚΩ	Resistance to ground for
POWER SUPPLY CURRENT		40	80	mA	Pin 1 and Pin 18
AC CHARACTERISTICS					$T_A = +25$ °C
CLOCK FREQUENCY					See Note 2
PULSE WIDTH (TPW) Clock Receiver strobe Transmitter strobe	150 150		DC DC	ns ns	50% Duty Cycle ± 10%. See Note 2 See Note 3
INPUT SET-UP TIME (TSET-UP) Address	50			ns	See Note 3
OUTPUT HOLD TIME (THOLD) Address	50			ns	
STROBE TO NEW FREQUENCY DELAY			6	CLK	

NOTE 1: XTAL/EXT inputs are either TTL compatible or crystal compatible. See crystal specification in

Applications Information section.

All inputs except XTAL, STR and STT have internal pull-up resistors

NOTE 2: Refer to frequency option tables for maximum input frequency on XTAL/EXT pins

Typical clock pulse width is 1/2 x CL

NOTE 3: Input set-up time can be decreased to >0 ns by increasing the minimum strobe width (50 ns) to a total of 200 ns. TA-D and RA-D have internal pull-up resistors

OPERATION

Standard Frequencies

Choose a Transmitter and Receiver frequency from the table below Program the corresponding address into TA-TD and RA-RD respectively using strobe pulses or by hard wiring the strobe and address inputs

Non-Standard Frequencies

To accomplish non-standard frequencies do one of the following:

- Choose a crystal that when divided by the WD1943 generates the desired frequency.
- Cascade devices by using the frequency outputs as an input to the XTAL/EXT inputs of the subsequent WD1943/45
- Consult the factory for possible changes via ROM mask reprogramming

FREQUENCY OPTIONS

TABLE 1. CRYSTAL FREQUENCY = 5.0688 MHZ

	Transmit/Receive Address				Theoretical	Actual	Percent	Duty Cycle	
D	С	В	Α	(16X Clock)	Freq. (kHz)	Freq. (kHz)	Error	%	Divisor
0	0	0	0	50	0.8	0.8		50/50	6336
ŏ	Õ	Ō	1	75	1.2	1.2		50/50	4224
ŏ	Ō	1	. 0	110	1.76	1.76	_	50/50	2880
ō	ا آ	1 1	1	134.5	2.152	2 1523	0.016	50/50	2355
ŏ	1	ó	Ó	150	2.4	2.4	_	50/50	2112
ŏ	1	0	1	300	4.8	4.8	_	50/50	1056
ŏ	1	1	Ó	600	9.6	9.6		50/50	528
ŏ	l i	l i	1	1200	19.2	19.2		50/50	264
ī	ĺó	0	o	1800	28 8	28.8	-	50/50	176
1	l ō	0	1	2000	32.0	32.081	0.253	50/50	158
i	ŏ	1	Ó	2400	38.4	38.4		50/50	132
1	ŏ	l i	1	3600	57.6	57.6		50/50	88
i	1 1	l o	Ó	4800	76.8	76.8	_	50/50	66
i	1	l ō	1	7200	115.2	115.2		50/50	44
i	l i	l i	O	9600	153.6	153 6		48/52	33
i	1	1	1	19,200	307.2	316.8	3.125	50/50	16

WD1943-00 or WD1945-00

TABLE 2 CLOCK FREQUENCY = 2.76480 MHZ

Transmlt/Receive Address			Baud Rate	Theoretical	Actual	Percent	Duty Cycle		
D	С	В	Α	(16X Clock)	Freq. (kHz)	Freq. (kHz)	Error	%	Divisor
0	0	0	0	50	0.8	0.8	_	50/50	3456
ŏ	ŏ	ō	1	75	1.2	1.2		50/50	2304
ŏ	ŏ	1	o	110	1.76	1.76	- 0.006	50/50	1571
ŏ	ň	i i	1	134.5	2.152	2.152	- 0.019	50/50	1285
ŏ	1 1	Ó	Ó	150	2.4	2.4		50/50	1152
ŏ	l i 1	ľň	1	200	3.2	3.2		50/50	864
ŏ	;	Ĭ	i	300	48	4.8	-	50/50	576
ň	;	l i	1	600	9.6	9.6		50/50	288
1	ا أ	ا أ	l ń	1200	19.2	19.2		50/50	144
i .	ň	ň	l i	1800	28.8	28.8		50/50	96
4	ň	l ĭ	ا أ	2000	32.0	32.15	+ 0.465	50/50	86
- 1	0 0	l i	1	2400	38.4	38.4	_	50/50	72
- 1	1 1	i	ا ا	3600	57.6	57.6		50/50	48
i	;	lŏ	l ĭ	4800	76.8	76.8	_	50/50	36
4	1 1	l i	ا أ	9600	153.6	153.6	-	50/50	18
;		;	l ĭ	19,200	307.2	307.2	_	50/50	9

WD1943-02 or WD1945-02

TABLE 3. CRYSTAL FREQUENCY = 6.018305 MHZ

	Transmit/Receive Address				Theoretical	Actual	Percent	Duty Cycle	
D	С	В	A	(16X Clock)	Freq. (kHz)	Freq. (kHz)	Error	%	Divisor
0	0	0	0	50	0.8	.7999	0	50/50	7523*
ŏ	l ŏ l	ا آ	1	75	1.2	1.2000	0	50/50	5015*
ŏ	l ŏ l	ĭ	ĺ	110	1.76	1.7597	0	50/50	3420
ŏ	l ŏ '	1	1	134.5	2,152	2.1517	0	50/50	2797*
ñ	1 1	ĺń	Ò	150	2.4	2.3996	0	50/50	2508
ñ	1 ;	ň	1 1	200	3 2	3.1995	0	50/50	1881*
Ö	1 4	l ĭ	ا أ	300	4.8	4.7993	0	50/50	1254
ň	1 4	;	1 1	600	9.6	9.5986	0	50/50	627*
1	l 'n	li	l i	1200	19.2	19.2279	+ 0.14	50/50	31.3*
4	l ŏ	lŏ	1 1	1800	28.8	28 7959	0	50/50	209*
- ;	l n	1 1	l i	2000	32.0	32.0125	0	50/50	188
1	l ŏ	l i	1	2400	38.4	38.3334	-0.17	50/50	157*
1	1 1	ا أ	Ιń	3600	57.6	57.8687	+ 0.46	50/50	104
4	;	Ιň	1 1	4800	76.8	77.1583	+ 0.46	50/50	78
	;	1 1	l 'n	9800	153.6	154 3166	+ 0.46	50/50	39*
1	1 1	1	1 1	19 200	307.2	300.9175	- 2.04	50/50	20

WD1943-03 or WD1945-03

TABLE 4. CLOCK FREQUENCY = 5.52960 MHZ

	Transmit/Receive Address			Baud Rate	Theoretical	Actual	Percent	Duty Cycle	
D	С	В	Α	(32X Clock)	Freq. (kHz)	Freq. (kHz)	Error	%	Divisor
0	0	0	0	50	1.6	1.6	-	50/50	3456
0	0	0	1	75	2.4	2.4		50/50	2304
0	0	1	0	110	3.52	3.52	- 0.006	50/50	1571
0	0	1	1	134.5	4.304	4.303	0 019	50/50	1285
0	1	0	0	150	4.8	4.8		50/50	1152
0	1	0	1	200	6.4	64		50/50	864
0 .	1	1	0	300	9.6	9.6		50/50	576
0	1	1	1	600	19.2	19.2	-	50/50	288
1	0	0	0	1200	38 4	38.4		50/50	144
1 1	0	0	1	1800	57 6	57.6		50/50	96
1	0	1	0	2000	64 0	64.3	+ 0.465	50/50	86
1	0	1	1	2400	76.8	76.8		50/50	72
1 1	1	0	0	3600	115.2	115.2		50/50	48
1	1	0	1	4800	153.6	153.6		50/50	36
1	1	1	0	9600	307.2	307.2	_	50/50	18
1	1	11	11	19,200	614.4	614.4		50/50	9

WD1943-04 or WD1945-04

TABLE 5. CRYSTAL FREQUENCY = 4.9152 MHZ

	Transmit/Receive Address			Baud Rate	Theoretical	Actual	Percent	Duty Cycle	
D	С	В	Α	(16X Clock)	Freq. (kHz)	Freq. (kHz)	Error	%	Divisor
0	0	0	0	50	0.8	0.8		50/50	6144
0	0	0	1	75	1.2	1.2		50/50	4096
0	0	1	0	110	1.76	1.7598	- 0.01	•	2793
0	0	1	1	134.5	2.152	2.152		50/50	2284
0	1	0	0	150	2.4	2.4	-	50/50	2048
0	1	0	1	300	4.8	4.8		50/50	1024
0	1	1	0	600	9.6	9.6		50/50	512
0	1	1 1	1	1200	19 2	19.2	_	50/50	256
1	0	0	0	1800	28.8	28.7438	~ 0.19	•	171
1	0	0	1	2000	32.0	31.9168	- 0.26	50/50	154
1	0	1	0	2400	38.4	38.4	_	50/50	128
1	0	1	1	3600	57.6	57.8258	0.39	•	85
1	1	0	0	4800	76.8	76.8	-	50/50	64
1	1 1	0	1	7200	115.2	114.306	- 0.77	•	43
1	1 1	1	0	9600	153.6	153.6		50/50	32
1	1	1	1	19,200	307.2	307.2		50/50	16

WD1943-05 or WD1945-05

TABLE 6. CRYSTAL FREQUENCY = 5.0688 MHZ

	Transmit/Receive Address			Baud Rate Th	Theoretical	Actual	Percent	Duty Cycle	
D	С	В	Α	(32X Clock)	Freq. (kHz)	Freq. (kHz)	Error	%	Divisor
0	0	0	0	50	16	1.6		50/50	3168
0	0	0	1	75	2.4	2.4	-	50/50	2112
0	0	1	0	110	3.52	3.52		50/50	1440
0	0	1	1	134.5	4.304	4.303	.026	50/50	1178
0	1 1	0	0	150	48	4.8		50/50	1056
0	1	0	1	200	6.4	6.4		50/50	792
0	1	1	0	300	9.6	9.6	****	50/50	528
0	1	1	1	600	19.2	19.2		50/50	264
1	0	0	0	1200	38.4	38 4		50/50	132
1	0	0	1	1800	57.6	57.6		50/50	88
1	0	1	0	2400	76.8	76.8	_	50/50	66
1	0	1	1	3600	115.2	115.2		50/50	44
1	1	0	0	4800	153.6	153.6		•	33
1	1	0	1	7200	230.4	230 4		50/50	22
1	1	1	0	9600	307.2	298.16	2 941	•	17
1	1	1 1	1	19,200	614.4	633.6	3.125	50/50	8

*When the duty cycle is not exactly 50% it is 50% ± 10%

WD1943-06 or WD1945-06

APPLICATIONS INFORMATION

OPERATION WITH A CRYSTAL

The WD1943/45 Baud Rate Generator may be driven by either a crystal or TTL level clock When using a crystal, the waveform that appears at pins 1 (XTAL/EXT 1) and 18 (XTAL/EXT 2) does not conform to the normal TTL limits of VIL \leq 0.8V and VIH \geq 2.0V Figure 1 illustrates a typical crystal waveform when connected to a WD1943/45

Since the D.C. level of the waveform causes the least positive point to typically be greater than 0.8V, the WD1943/45 is designed to look for an edge, as opposed to a TTL level. The XTAL/EXT logic triggers on a rising edge of typically 1V in magnitude. This allows the use of a crystal without any additional components

OPERATIONS WITH TTL LEVEL CLOCK

With clock frequencies in the area of 5 MHz, significant overshoot and undershoot ("iniging") can appear at pins 1 and/or 18. The clock oscilator may, at times be triggered on a rising edge of an overshoot or undershoot waveform, causing the device to effectively "double-trigger." This phenomenon may result as a twice expected baud rate, or as an apparent device failure. Figure 2 shows a typical waveform that exhibits the "ringing" problem.

The design methods required to minimize ringing include the following:

- Minimize the P.C. trace length. At 5 MHz, each inch of trace can add significantly to overshoot and undershoot.
- Match impedances at both ends of the trace For example, a series resistor near the device may be helpful
- A uniform impedance is important. This can be accomplished through the use of:
 - a. parallel ground lines
 - b. evenly spaced ground lines crossing the trace on the opposite side of PC board
 - an inner plane of ground, e.g., as in a four layered PC board.

In the event that ringing exists on an already finished board, several techniques can be used to reduce it These are:

- Add a series resistor to match impedance as shown in Figure 3.
- Add pull-up/pull-down resistor to match impedance, as shown in Figure 4.
- Add a high speed diode to clamp undershoot, as shown in Figure 5.

The method that is easiest to implement in many systems is method 1, the series resistor. The series resistor will cause the D.C. level to shift up, but that does not cause a problem since the OSC is triggered by an edge, as opposed to a TTL level.

The 1943/45 Baud Rate Generator can save both board space and cost in a communications system By choosing either a crystal or a TTL level clock, the user can minimize the logic required to provide baud rate clocks in a given design

POWER LINE SPIKES

Voltage transients on the AC power line may appear on the DC power output. If this possibility exists, it is suggested that a by-pass capacitor is used between +5V and GND

CRYSTAL SPECIFICATIONS

User must specify termination (pin, wire, other) Frequency — See Tables 1-6. Temperature range 0°C to +70°C Series resistance $\leq 50\Omega$ Series resonant Overall tolerance $\pm 0.01\%$

CRYSTAL MANUFACTURERS (Partial List)

American Time Products Div Frequency Control Products, Inc. 61-20 Woodside Ave Woodside, New York 11377 (213) 458-5811

Bliley Electric Co. 2545 Grandview Blvd Erie, Pennsylvania 16508 (814) 838-3571

M-tron Ind. Inc. P.O. Box 630 Yankton, South Dakota 57078 (605) 665-9321

Erie Frequency Control 453 Lincoln St Calisle, Pennsylvania 17013 (714) 249-2232

Figure 2. TYPICAL "RINGING" WAVEFORM from TTL INPUT

See page 725 for ordering information.

Information furnished by Western Digital Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Western Digital Corporation for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Western Digital Corporation. Western Digital Corporation reserves the right to change specifications at anytime without notice.

WESTERN DIGITAL

ORPOR

FD179X-02

Floppy Disk Formatter/Controller Family

FEATURES

- . TWO VFO CONTROL SIGNALS RG & VFOE
- SOFT SECTOR FORMAT COMPATIBILITY
- AUTOMATIC TRACK SEEK WITH VERIFICATION
- ACCOMMODATES SINGLE AND DOUBLE DENSITY **FORMATS**

IBM 3740 Single Density (FM) IBM System 34 Double Density (MFM) Non IBM Format for Increased Capacity

- READ MODE
- Single/Multiple Sector Read with Automatic Search or Entire Track Read
- Selectable 128, 256, 512 or 1024 Byte Sector Lengths
- WRITE MODE
 - Single/Multiple Sector Write with Automatic Sector Search
- Entire Track Write for Diskette Formatting
- SYSTEM COMPATIBILITY
 - Double Buffering of Data 8 Bit Bi-Directional Bus for Data, Control and Status

DMA or Programmed Data Transfers All Inputs and Outputs are TTL Compatible

On-Chip Track and Sector Registers/Comprehensive Status Information

- PROGRAMMABLE CONTROLS Selectable Track to Track Stepping Time Side Select Compare
- INTERFACES TO WD1691 DATA SEPARATOR
- WINDOW EXTENSION
- INCORPORATES ENCODING/DECODING AND ADDRESS MARK CIRCUITRY
- FD1792/4 IS SINGLE DENSITY ONLY
- FD1795/7 HAS A SIDE SELECT OUTPUT

179X-02 FAMILY CHARACTERISTICS

FEATURES	1791	1792	1793	1794	1795	1797
Single Density (FM)	Х	X	Х	Х	Х	Х
Double Density (MFM)	Х		Х		Х	Х
True Data Bus			Х	Х		Х
Inverted Data Bus	Х	Х			Х	
Write Precomp	Х	Х	Х	Х	Х	Х
Side Selection Output					Х	Х

APPLICATIONS

8" FLOPPY AND 51/4" MINI FLOPPY CONTROLLER SINGLE OR DOUBLE DENSITY CONTROLLER/FORMATTER

FD179X SYSTEM BLOCK DIAGRAM

PIN OUTS

PIN NUMBER	PIN NAME	SYMBOL	FUNCTION
1	NO CONNECTION	NC	Pin 1 is internally connected to a back bias generator and must be left open by the user.
19	MASTER RESET	MR	A logic low (50 microseconds min.) on this input resets the device and loads HEX 03 into the command register. The Not Ready (Status Bit 7) is reset during MR ACTIVE. When MR is brought to a logic high a RESTORE Command is executed, regardless of the state of the Ready signal from the drive. Also, HEX 01 is loaded into sector register.
20	POWER SUPPLIES	Vss	Ground
21		Vcc	+5V ±5%
40		Voo	+ 12V ±5%
СОМРИТЕ	R INTERFACE:		
2	WRITE ENABLE	WE	A logic low on this input gates data on the DAL into the selected register when CS is low.
3	CHIP SELECT	ĊŚ	A logic low on this input selects the chip and enables computer communication with the device.
4	READ ENABLE	RE	A logic low on this input controls the placement of data from a selected register on the DAL when $\overline{\text{CS}}$ is low.
5,6	REGISTER SELECT LINES	A0, A1	These inputs select the register to receive/transfer data on the DAL lines under RE and WE control:
			CS A1 A0 RE WE 0 0 0 Status Reg Command Reg 0 0 1 Track Reg Track Reg 0 1 0 Sector Reg Sector Reg 0 1 1 Data Reg Data Reg
7-14	DATA ACCESS LINES	DALO-DAL7	Eight bit Bidirectional bus used for transfer of data, control, and status. This bus is receiver enabled by WE or transmitter enabled by RE. Each line will drive 1 standard TTL load.
24	CLOCK	CLK	This input requires a free-running 50% duty cycle square wave clock for internal timing reference, 2 MHz ± 1% for 8" drives, 1 MHz ± 1% for mini-floppies.
38	DATA REQUEST	DRQ	This open drain output indicates that the DR contains assembled data in Read operations, or the DR is empty in Write operations. This signal is reset when serviced by the computer through reading or loading the DR in Read or Write operations, respectively. Use 10K pull-up resistor to +5.
39	INTERRUPT REQUEST	INTRQ	This open drain output is set at the completion of any command and is reset when the STATUS register is read or the command register is written to. Use 10K pull-up resistor to +5
FLOPPY [DISK INTERFACE:		
15	STEP	STEP	The step output contains a pulse for each step.
16	DIRECTION	DIRC	Direction Output is active high when stepping in, active low when stepping out.
17	EARLY	EARLY	Indicates that the WRITE DATA pulse occuring while Early is active (high) should be shifted early for write precompensation.
18	LATE	LATE	Indicates that the write data pulse occurring while Late is active (high) should be shifted late for write precompensation.

PIN NUMBER	PIN NAME	SYMBOL	FUNCTION
22	TEST	TEST	This input is used for testing purposes only and should be tied to +5V or left open by the user unless interfacing to voice coil actuated steppers.
23	HEAD LOAD TIMING	HLT	When a logic high is found on the HLT input the head is assumed to be engaged. It is typically derived from a 1 shot triggered by HLD.
25	READ GATE (1791, 1792, 1793, 1794)	RG	This output is used for synchronization of external data separators. The output goes high after two Bytes of zeros in single density, or 4 Bytes of either zeros or ones in double density operation.
25	SIDE SELECT OUTPUT (1795, 1797)	sso	The logic level of the Side Select Output is directly controlled by the 'S' flag in Type II or III commands When U = 1, SSO is set to a logic 1. When U = 0, SSO is set to a logic 0. The SSO is compared with the side information in the Sector I D Field If they do not compare Status Bit 4 (RNF) is set. The Side Select Output is only updated at the beginning of a Type II or III command. It is forced to a logic 0 upon a MASTER RESET condition.
26	READ CLOCK	RCLK	A nominal square-wave clock signal derived from the data stream must be provided to this input. Phasing (i.e. RCLK transitions) relative to RAW READ is important but polarity (RCLK high or low) is not
27	RAW READ	RAW READ	The data input signal directly from the drive. This input shall be a negative pulse for each recorded flux transition.
28	HEAD LOAD	HLD	The HLD output controls the loading of the Read-Write head against the media.
29	TRACK GREATER THAN 43	TG43	This output informs the drive that the ReadWrite head is positioned between tracks 44-76 This output is valid only during Read and Write Commands.
30	WRITE GATE	WG	This output is made valid before writing is to be performed on the diskette
31	WRITE DATA	WD	A 200 ns (MFM) or 500 ns (FM) output pulse per flux transition. WD contains the unique Address marks as well as data and clock in both FM and MFM formats.
32	READY	READY	This input indicates disk readiness and is sampled for a logic high before Read or Write commands are performed. If Ready is low the Read or Write operation is not performed and an interrupt is generated. Type I operations are performed regardless of the state of Ready. The Ready input appears in inverted format as Status Register bit 7
33	WRITE FAULT VFO ENABLE	WF/VFOE	This is a bi-directional signal used to signify writing faults at the drive, and to enable the external PLO data separator. When WG = 1, Pin 33 functions as a WF input. If WF = 0, any write command will immediately be terminated. When WG = 0, Pin 33 functions as a VFOE output. VFOE will go low during a read operation after the head has loaded and settled (HLT = 1). On the 1795/7, it will remain low until the last bit of the second CRC byte in the ID field. VFOE will then go high until 8 bytes (MFM) or 4 bytes (FM) before the Address Mark. It will then go side until the last bit of the second CRC byte of the Data Field. On the 1791/3, VFOE will remain low until the end of the Data Field. This pin has an internal 100K Ohm pull-up resistor.
34	TRACK 00	TR00	This input informs the FD179X that the Read/Write head is positioned over Track 00.

PIN NUMBER	PIN NAME	SYMBOL	FUNCTION
35	INDEX PULSE	ĨΡ	This input informs the FD179X when the index hole is encountered on the diskette.
36	WRITE PROTECT	WPRT	This input is sampled whenever a Write Command is received. A logic low terminates the command and sets the Write Protect Status bit
37	DOUBLE DENSITY	DDEN	This input pin selects either single or double density operation. When DDEN = 0, double density is selected. When DDEN = 1, single density is selected. This line must be left open on the 1792/4.

GENERAL DESCRIPTION

The FD179X are N-Channel Silicon Gate MOS LSI devices which perform the functions of a Floppy Disk Formatter/Controller in a single chip implementation. The FD179X, which can be considered the end result of both the FD1771 and FD1781 designs, is IBM 3740 compatible in single density mode (FM) and System 34 compatible in Double Density Mode (MFM). The FD179X contains all the features of its predecessor the FD1771, plus the added features necessary to read/write and format a double density diskette. These include address mark detection, FM and MFM encode and decode logic, window extension, and write precompensation. In order to maintain compatibility, the FD1771, FD1781, and FD179X designs were made as close as possible with the computer interface, instruction set, and I/O registers being identical. Also, head load control is identical. In each case, the actual pin assignments vary by only a few pins from any one to

The processor interface consists of an 8-bit bi-directional bus for data, status, and control word transfers. The FD179X is set up to operate on a multiplexed bus with other bus-oriented devices

The FD179X is TTL compatible on all inputs and outputs. The outputs will drive ONE TTL load or three LS loads The 1793 is identical to the 1791 except the DAL lines are TRUE for systems that utilize true data busses

The 1795/7 has a side select output for controlling double sided drives, and the 1792 and 1794 are "Single Density Only" versions of the 1791 and 1793 respectively. On these devices, DDEN must be left open.

ORGANIZATION

The Floppy Disk Formatter block diagram is illustrated on page 5. The primary sections include the parallel processor interface and the Floppy Disk interface.

Data Shift Register — This 8-bit register assembles serial data from the Read Data input (RAW READ) guring Read operations and transfers serial data to the Write Data output during Write operations.

Data Register — This 8-bit register is used as a holding register during Disk Read and Write operations. In Disk Read operations the assembled data byte is transferred in parallel to the Data Register from the Data Shift Register. In Disk Write operations information is transferred in parallel from the Data Register to the Data Shift Register.

When executing the Seek command the Data Register holds the address of the desired Track position. This register is loaded from the DAL and gated onto the DAL under processor control.

Track Register — This 8-bit register holds the track number of the current Read/Write head position. It is incremented by one every time the head is stepped in (towards track 76) and decremented by one when the head is stepped out (towards track 00). The contents of the register are compared with the recorded track number in the ID field during disk Read, Write, and Verify operations. The Track Register can be loaded from or transferred to the DAL. This Register should not be loaded when the device is busy.

Sector Register (SR) — This 8-bit register holds the address of the desired sector position. The contents of the register are compared with the recorded sector number in the ID field during disk Read or Write operations. The Sector Register contents can be loaded from or transferred to the DAL This register should not be loaded when the device is busy.

Command Register (CR) — This 8-bit register holds the command presently being executed. This register should not be loaded when the device is busy unless the new command is a force interrupt. The command register can be loaded from the DAL, but not read onto the DAL.

Status Register (STR) — This 8-bit register holds device Status information. The meaning of the Status bits is a function of the type of command previously executed. This register can be read onto the DAL, but not loaded from the DAL

CRC Logic — This logic is used to check or to generate the 16-bit Cyclic Redundancy Check (CRC). The polynomial is: $G(x) = x^{16} + x^{12} + x^5 + 1$.

The CRC includes all information starting with the address mark and up to the CRC characters. The CRC register is preset to ones prior to data being shifted through the circuit

Arithmetic/Logic Unit (ALU) — The ALU is a serial comparator, incrementer, and decrementer and is used for register modification and comparisons with the disk recorded ID field.

Timing and Control — All computer and Floppy Disk Interface controls are generated through this logic. The internal device timing is generated from an external crystal clock.

The FD179X has two different modes of operation according to the state of \overline{DDEN} When $\overline{DDEN}=0$ double density (MFM) is assumed. When $\overline{DDEN}=1$, single

FD179X BLOCK DIAGRAM

density (FM) is assumed. 1792 & 1794 are single density only.

AM Detector — The address mark detector detects ID, data and index address marks during read and write operations.

PROCESSOR INTERFACE

The interface to the processor is accomplished through the eight Data Access Lines (DAL) and associated control signals. The DAL are used to transfer Data, Status, and Control words out of, or into the FD179X. The DAL are three state buffers that are enabled as output drivers when Chip Select (CS) and Read Enable (RE) are active (low logic state) or act as input receivers when CS and Write Enable (WE) are active.

When transfer of data with the Floppy Disk Controller is required by the host processor, the device address is decoded and $\overline{\text{CS}}$ is made low. The address bits A1 and A0, combined with the signals $\overline{\text{RE}}$ during a Read operation or $\overline{\text{WE}}$ during a Write operation are interpreted as selecting the following registers:

A1	- A0	READ (RE)	WRITE (WE)
0	0	Status Register	Command Register
0	1	Track Register	Track Register
1	0	Sector Register	Sector Register
1	1	Data Register	Data Register

During Direct Memory Access (DMA) types of data transfers between the Data Register of the FD179X and the processor, the Data Request (DRQ) output is used in Data Transfer control. This signal also appears as status bit 1 during Read and Write operations.

On Disk Read operations the Data Request is activated (set high) when an assembled serial input byte is transferred in parallel to the Data Register. This bit is cleared when the Data Register is read by the processor. If the Data Register is read after one or more characters are lost, by having new data transferred into the register prior to processor readout, the Lost Data bit is set in the Status Register. The Read operation continues until the end of sector is reached

On Disk Write operations the data Request is activated when the Data Register transfers its contents to the Data

Shift Register, and requires a new data byte It is reset when the Data Register is loaded with new data by the processor. If new data is not loaded at the time the next serial byte is required by the Floppy Disk, a byte of zeroes is written on the diskette and the Lost Data bit is set in the Status Register.

At the completion of every command an INTRQ is generated INTRQ is reset by either reading the status register or by loading the command register with a new command. In addition, INTRQ is generated if a Force Interrupt command condition is met.

The 179X has two modes of operation according to the state of DDEN (Pin 37) When DDEN = 1, single density is selected In either case, the CLK input (Pin 24) is at 2 MHz. However, when interfacing with the mini-floppy, the CLK input is set at 1 MHz for both single density and double

GENERAL DISK READ OPERATIONS

Sector lengths of 128, 256, 512 or 1024 are obtainable in either FM or MFM formats. For FM, DDEN should be placed to logical "1." For MFM formats, DDEN should be placed to a logical "0." Sector lengths are determined at format time by the fourth byte in the "ID" field.

Sector Length Table*						
Sector Length Field (hex)	Number of Bytes in Sector (decimal)					
00	128					
01	256					
02	512					
03	1024					

*1795/97 may vary - see command summary.

The number of sectors per track as far as the FD179X is concerned can be from 1 to 255 sectors. The number of tracks as far as the FD179X is concerned is from 0 to 255 tracks. For IBM 3740 compatibility, sector lengths are 128 bytes with 26 sectors per track. For System 34 compatibility (MFM), sector lengths are 256 bytes/sector with 26 sectors/track; or lengths of 1024 bytes/sector with 8 sectors/track. (See Sector Length Table)

For read operations in 8" double density the FD179X requires RAW READ Data (Pin 27) signal which is a 200 ns pulse per flux transition and a Read clock (RCLK) signal to indicate flux transition spacings. The RCLK (Pin 26) signal is provided by some drives but if not it may be derived externally by Phase lock loops, one shots, or counter techniques. In addition, a Read Gate Signal is provided as an output (Pin 25) on 1791/92/93/94 which can be used to inform phase lock loops when to acquire synchronization When reading from the media in FM. RG is made true when 2 bytes of zeroes are detected. The FD179X must find an address mark within the next 10 bytes; otherwise RG is reset and the search for 2 bytes of zeroes begins all over again. If an address mark is found within 10 bytes, RG remains true as long as the FD179X is deriving any useful information from the data stream. Similarly for MFM, RG is made active when 4 bytes of "00" or "FF" are detected. The FD179X must find an address mark within the next 16 bytes, otherwise RG is reset and search resumes.

During read operations (WG = 0), the $\overline{\text{VFOE}}$ (Pin 33) is provided for phase lock loop synchronization. $\overline{\text{VFOE}}$ will go active low when:

- a) Both HLT and HLD are True
- b) Settling Time, if programmed, has expired
- c) The 179X is inspecting data off the disk

If $\overline{WF}/\overline{VFOE}$ is not used, leave open or tie to a 10K resistor to +5.

GENERAL DISK WRITE OPERATION

When writing is to take place on the diskette the Write Gate (WG) output is activated, allowing current to flow into the Read/Write head. As a precaution to erroneous writing the first data byte must be loaded into the Data Register in response to a Data Request from the FD179X before the Write Gate signal can be activated.

Writing is inhibited when the Write Protect input is a logic low, in which case any Write command is immediately terminated, an interrupt is generated and the Write Protect status bit is set The Write Fault input, when activated, signifies a writing fault condition detected in disk drive electronics such as failure to detect write current flow when the Write Gate is activated On detection of this fault the FD179X terminates the current command, and sets the Write Fault bit (bit 5) in the Status Word. The Write Fault input should be made inactive when the Write Gate output becomes inactive

For write operations, the FD179X provides Write Gate (Pin 30) and Write Data (Pin 31) outputs. Write data consists of a series of 500 ns pulses in FM (\overline{DDEN} = 1) and 200 ns pulses in MFM (\overline{DDEN} = 0). Write Data provides the unique address marks in both formats

Also during write, two additional signals are provided for write precompensation. These are EARLY (Pin 17) and LATE (Pin 18) EARLY is active true when the WD pulse appearing on (Pin 30) is to be written EARLY. LATE is active true when the WD pulse is to be written LATE. If both EARLY and LATE are low when the WD pulse is present, the WD pulse is to be written at nominal. Since write precompensation values vary from disk manufacturer to disk manufacturer, the actual value is determined by several one shots or delay lines which are located external to the FD179X. The write precompensation signals EARLY and LATE are valid for the duration of WD in both FM and MFM formats.

READY

Whenever a Read or Write command (Type II or III) is received the FD179X samples the Ready input. If this input is logic low the command is not executed and an interrupt is generated. All Type I commands are performed regardless of the state of the Ready input. Also, whenever a Type II or III command is received, the TG43 signal output is updated.

COMMAND DESCRIPTION

The FD179X will accept eleven commands. Command words should only be loaded in the Command Register when the Busy status bit is off (Status bit 0). The one exception is the Force Interrupt command Whenever a command is being executed, the Busy status bit is set. When a command is completed, an interrupt is generated and the Busy status bit is reset. The Status Register indicates whether the completed command encountered an error or was fault free For ease of discussion, commands are divided into four types Commands and types are summarized in Table 1.

TABLE 1. COMMAND SUMMARY

A. Commands for Models: 1791, 1792, 1793, 1794

B. Commands for Models: 1795, 1797

-			,							D. C	Jiiiiia	nus ic	NOON	eis: 17	95, 17	97	
_					В	its							В	its			
Type	Command	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
- 1	Restore	0	0	0	0	h	V	r ₁	ro	0	n	Ω	0	h	V	r-	ro
1	Seek	0	0	0	1	h	٧	Γį	ro	0	n	ñ	1	h	v	74	ro
1	Step	0	0	1	Т	h	V	r 1	ro	0	ñ	1	Ť	h	v	r ₄	ro
1	Step-in	0	1	0	T	h	٧	r ₁	ro	١٥	1	'n	Ť	h	V	ra .	ro .u
	Step-out	0	1	1	Т	h	V	rı	ro	0	1	1	Ť	h	V	r ₁	ro
Ш	Read Sector	1	0	0	m	S	Ė	Ċ	0	1	'n	'n	m	1	Ľ	- 11	0
II	Write Sector	1	0	1	m	S	Ē	č	a0	1	ñ	1	m	ī	-	- 11	a ₀
Ш	Read Address	1	1	0	0	0	Ē	ō	o o	1	1	'n	0	ñ			0
111	Read Track	1	1	1	0	0	Ē	ō	ō	1	1	1	n	n		11	0
111	Write Track	1	1	1	1	0	Ē	ő	Ő.	1	1	1	1	ñ	=	11	0
IV	Force Interrupt	1	1	0	1	13	Ī2	Ĭ1	lo	l i	i	'n	1	l3	12	lı	lo

FLAG SUMMARY

TABLE 2. FLAG SUMMARY

Command Type	Bit No(s)		Description			
ı	0, 1	f1 f0 = Stepping Motor Rate See Table 3 for Rate Summan				
I	2	V = Track Number Verify Fla	g V = 0, No verify V = 1, Verify on destination track			
1	3	h = Head Load Flag	h = 1, Load head at beginning h = 0, Unload head at beginning			
t	4	T = Track Update Flag	T = 0, No update T = 1, Update track register			
11	0	a ₀ = Data Address Mark	a ₀ = 0, FB (DAM) a ₀ = 1, F8 (deleted DAM)			
11	1	C = Side Compare Flag	C = 0, Disable side compare C = 1, Enable side compare			
11 & 111	1	U = Update SSO	U = 0, Update SSO to 0 U = 1, Update SSO to 1			
11 & 111	2	E = 15 MS Delay	E = 0, No 15 MS delay E = 1, 15 MS delay			
11	3	S = Side Compare Flag	S = 0, Compare for side 0 S = 1, Compare for side 1			
H	3	L = Sector Length Flag	LSB's Sector Length in ID Field 00 01 10 11 L = 0 256 512 1024 128 L = 1 128 256 512 1024			
II	4	m = Multiple Record Flag $m = 0$, Single record $m = 1$, Multiple records				
IV	0-3	x = Interrupt Condition Flags 0 = 1 Not Ready To Ready Transition 1 = 1 Ready To Not Ready Transition 2 = 1 Index Pulse 3 = 1 Immediate Interrupt, Requires A Reset 3-10 = 0 Terminate With No Interrupt (INTRQ)				

^{*}NOTE: See Type IV Command Description for further information.

TYPE I COMMANDS

The Type I Commands include the Restore, Seek, Step, Step-In, and Step-Out commands. Each of the Type I Commands contains a rate field (¹⁰ ¹¹), which determines the stepping motor rate as defined in Table 3.

A 2 μ s (MFM) or 4 μ s (FM) pulse is provided as an output to the drive. For every step pulse issued, the drive moves one track location in a direction determined by the direction output. The chip will step the drive in the same direction it last stepped unless the command changes the direction.

The Direction signal is active high when stepping in and low when stepping out. The Direction signal is valid 12 μs before the first stepping pulse is generated.

The rates (shown in Table 3) can be applied to a Step-Direction Motor through the device interface

TABLE 3. STEPPING RATES

ÇI	_ĸ	2 MHz	2 MHz	1 MHz	1 MHz	2 MHz	1 MHz
DD	EN	0	1	0	1	×	×
R1	RO	TEST=1	TEST=1	TEST=1	TEST=1	TEST=0	TEST=0
0	0	3 ms	3 ms	6 ms	6 ms	184µs	368µs
0	1	6 ms	6 ms	12 ms	12 ms	190µs	380µs
1	0	10 ms	10 ms	20 ms	20 ms	198μ5	396µs
1	1	15 ms	15 ms	30 ms	30 ms	208µs	416µs

After the last directional step an additional 15 milliseconds of head settling time takes place if the Verify flag is set in Type I commands Note that this time doubles to 30 ms for a 1 MHz clock If TEST = 0, there is zero settling time. There is also a 15 ms head settling time if the E flag is set in any Type II or III command

When a Seek, Step or Restore command is executed an optional verification of Read-Write head position can be performed by settling bit 2 (V = 1) in the command word to a logic 1. The verification operation begins at the end of the 15 millisecond settling time after the head is loaded against the media. The track number from the first encountered ID Field is compared against the contents of the Track Register. If the track numbers compare and the ID Field Cyclic Redundancy Check (CRC) is correct, the verify operation is complete and an INTRO is generated with no errors If there is a match but not a valid CRC, the CRC error status bit is set (Status bit 3), and the next encountered ID field is read from the disk for the verification operation.

The FD179X must find an ID field with correct track number and correct CRC within 5 revolutions of the media; otherwise the seek error is set and an INTRQ is generated If V=0, no verification is performed

The Head Load (HLD) output controls the movement of the read/write head against the media. HLD is activated at the beginning of a Type I command if the h flag is set (h = 1), at the end of the Type I command if the verify flag (V = 1), or upon receipt of any Type II or III command Once HLD is active it remains active until either a Type I command is received with (h = 0 and V = 0); or if the FD179X is in an idle state (non-busy) and 15 index pulses have occurred.

Head Load timing (HLT) is an input to the FD179X which is used for the head engage time. When HLT = 1, the FD179X assumes the head is completely engaged The head engage time is typically 30 to 100 ms depending on drive The low to high transition on HLD is typically used to fire a one shot The output of the one shot is then used for HLT and supplied as an input to the FD179X.

HEAD LOAD TIMING

When both HLD and HLT are true, the FD179X will then read from or write to the media. The "and" of HLD and HLT appears as status Bit 5 in Type I status.

In summary for the Type I commands: if h=0 and $V=0,\,HLD$ is reset If h=1 and $V=0,\,HLD$ is set at the beginning of the command and HLT is not sampled nor is there an internal 15 ms delay If h=0 and $V=1,\,HLD$ is set near the end of the command, an internal 15 ms occurs, and the FD179X waits for HLT to be true. If h=1 and $V=1,\,HLD$ is set at the beginning of the command. Near the end of the command, after all the steps have been issued, an internal 15 ms delay occurs and the FD179X then waits for HLT to occur

For Type II and III commands with E flag off, HLD is made active and HLT is sampled until true With E flag on, HLD is made active, an internal 15 ms delay occurs and then HLT is sampled until true

RESTORE (SEEK TRACK 0)

Upon receipt of this command the Track 00 (TR00) input is sampled If TR00 is active low indicating the Read-Write head is positioned over track 0, the Track Register is loaded with zeroes and an interrupt is generated If TR00 is not active low, stepping pulses (pins 15 to 16) at a rate specified by the 11 f0 field are issued until the TR00 input is activated at this time the Track Register is loaded with zeroes and an interrupt is generated. If the TR00 input does not go active low after 255 stepping pulses, the FD179X terminates operation, interrupts, and sets the Seek error status bit, providing the V flag is set. A verification operation also takes place if the V flag is set. The h bit allows the head to be loaded at the start of command. Note that the Restore command is executed when MR goes from an active to an inactive state and that the DRQ pin stays low.

SEEK

This command assumes that the Track Register contains the track number of the current position of the Read-Write head and the Data Register contains the desired track number. The FD179X will update the Track register and issue stepping pulses in the appropriate direction until the contents of the Track register are equal to the contents of

the Data Register (the desired track location). A verification operation takes place if the V flag is on. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command. Note: When using multiple drives, the track register must be updated for the drive selected before seeks are issued.

STEF

Upon receipt of this command, the FD179X issues one stepping pulse to the disk drive. The stepping motor direction is the same as in the previous step command. After a delay determined by the '110 field, a verification takes place if the V flag is on If the U flag is on, the Track Register is updated. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command

STEP-IN

Upon receipt of this command, the FD179X issues one stepping pulse in the direction towards track 76. If the U

TYPE I COMMAND FLOW

flag is on, the Track Register is incremented by one After a delay determined by the f1f0 field, a verification takes place if the V flag is on. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command.

STEP-OUT

Upon receipt of this command, the FD179X issues one stepping pulse in the direction towards track 0. If the U flag is on, the Track Register is decremented by one. After a delay determined by the f1f0 fleld, a verification takes place if the V flag is on. The h bit allows the head to be loaded at the start of the command. An interrupt is generated at the completion of the command

EXCEPTIONS

On the 1795/7 devices, the SSO output is not affected during Type 1 commands, and an internal side compare does not take place when the (V) Verify Flag is on.

TYPE I COMMAND FLOW

TYPE II COMMANDS

The Type II Commands are the Read Sector and Write Sector commands Prior to loading the Type II Command into the Command Register, the computer must load the Sector Register with the desired sector number. Upon receipt of the Type II command, the busy status Bit is set. If the E flag = 1 (this is the normal case) HLD is made active and HLT is sampled after a 15 msec delay. If the E flag is 0, the head is loaded and HLT sampled with no 15 msec delay The ID field and Data Field format are shown on page 13.

When an ID field is located on the disk, the FD179X compares the Track Number on the ID field with the Track Register. If there is not a match, the next encountered ID field is read and a comparison is again made. If there was a match, the Sector Number of the ID field is compared with the Sector Register. If there is not a Sector match, the next encountered ID field is read off the disk and comparisons again made. If the ID field CRC is correct, the data field is

then located and will be either written into, or read from depending upon the command. The FD179X must find an ID field with a Track number, Sector number, side number, and CRC within four revolutions of the disk; otherwise, the Record not found status bit is set (Status bit 3) and the command is terminated with an interrupt.

TYPE II COMMAND

Each of the Type II Commands contains an (m) flag which determines if multiple records (sectors) are to be read or written, depending upon the command. If m=0, a single sector is read or written and an interrupt is generated at the completion of the command If m=1, multiple records are read or written with the sector register internally updated so that an address verification can occur on the next

record. The FD179X will continue to read or write multiple records and update the sector register in numerical ascending sequence until the sector register exceeds the number of sectors on the track or until the Force Interrupt command is loaded into the Command Register, which terminates the command and generates an interrupt.

For example: If the FD179X is instructed to read sector 27 and there are only 26 on the track, the sector register exceeds the number available. The FD179X will search for 5 disk revolutions, interrupt out, reset busy, and set the record not found status bit.

The Type II commands for 1791-94 also contain side select compare flags. When C = 0 (Bit 1) no side comparison is made. When C = 1, the LSB of the side number is read off the ID Field of the disk and compared with the contents of the (S) flag (Bit 3). If the S flag compares with the side number recorded in the ID field, the FD179X continues with the ID search. If a comparison is not made within 5 index pulses, the interrupt line is made active and the Record-Not-Found status bit is set

The Type II and III commands for the 1795-97 contain a side select flag (Bit 1). When U = 0, SSO is updated to 0. Similarly, U = 1 updates SSO to 1. The chip compares the SSO to the ID field. If they do not compare within 5 revolutions the interrupt line is made active and the RNF status bit is set The 1795/7 READ SECTOR and WRITE SECTOR com-

mands include a 'L' flag. The 'L' flag, in conjunction with the sector length byte of the ID Field, allows different byte lengths to be implemented in each sector. For IBM compatability, the 'L' flag should be set to a one.

READ SECTOR

Upon receipt of the Read Sector command, the head is loaded, the Busy status bit set, and when an ID field is encountered that has the correct track number, correct sector number, correct side number, and correct CRC, the data field is presented to the computer. The Data Address

TYPE II COMMAND

TYPE II COMMAND

TYPE II COMMAND

Mark of the data field must be found within 30 bytes in single density and 43 bytes in double density of the last ID field CRC byte; if not, the ID field is searched for and verified again followed by the Data Address Mark search. If after 5 revolutions the DAM cannot be found, the Record Not Found status bit is set and the operation is terminated. When the first character or byte of the data field has been shifted through the DSR, it is transferred to the DR, and DRQ is generated. When the next byte is accumulated in the DSR, it is transferred to the DR and another DRQ is generated. If the Computer has not read the previous contents of the DR before a new character is transferred that character is lost and the Lost Data Status bit is set This sequence continues until the complete data field has been inputted to the computer. If there is a CRC error at the end of the data field, the CRC error status bit is set, and the command is terminated (even if it is a multiple record command)

At the end of the Read operation, the type of Data Address Mark encountered in the data field is recorded in the Status Register (Bit 5) as shown:

STATUS BIT 5

- Deleted Data Mark
- Data Mark Λ

WRITE SECTOR

Upon receipt of the Write Sector command, the head is loaded (HLD active) and the Busy status bit is set. When an ID field is encountered that has the correct track number, correct sector number, correct side number, and correct CRC, a DRQ is generated. The FD179X counts off 11 bytes in single density and 22 bytes in double density from the CRC field and the Write Gate (WG) output is made active if the DRQ is serviced (i.e., the DR has been loaded by the computer). If DRQ has not been serviced, the command is terminated and the Lost Data status bit is set. If the DRQ has been serviced, the WG is made active and six bytes of zeroes in single density and 12 bytes in double density are then written on the disk. At this time the Data Address Mark is then written on the disk as determined by the ao field of the command as shown below:

ao	Data Address Mark (Bit 0)
1	Deleted Data Mark
0	Data Mark

The FD179X then writes the data field and generates DRQ's to the computer. If the DRQ is not serviced in time for continuous writing the Lost Data Status Bit is set and a byte of zeroes is written on the disk. The command is not terminated. After the last data byte has been written on the disk, the two-byte CRC is computed internally and written on the disk followed by one byte of logic ones in FM or in MFM. The WG output is then deactivated. For a 2 MHz clock the INTRQ will set 8 to 12 usec after the last CRC byte is written. For partial sector writing, the proper method is to write the data and fill the balance with zeroes. By letting the chip fill the zeroes, errors may be masked by the lost data status and improper CRC Bytes.

TYPE III COMMANDS

READ ADDRESS

Upon receipt of the Read Address command, the head is loaded and the Busy Status Bit is set. The next encountered ID field is then read in from the disk, and the six data bytes of the ID field are assembled and transferred to the DR, and a DRQ is generated for each byte. The six bytes of the ID field are shown below:

TRACK	SIDE	SECTOR	SECTOR	CRC	CRC
ADDR	NUMBER	ADDRESS	LENGTH	1	2
1	2	3	4	5	6

Although the CRC characters are transferred to the computer, the FD179X checks for validity and the CRC error status bit is set if there is a CRC error. The Track Address of the ID field is written into the sector register so that a comparison can be made by the user. At the end of the operation an interrupt is generated and the Busy Status is reset

READ TRACK

Upon receipt of the READ track command, the head is loaded, and the Busy Status bit is set Reading starts with the leading edge of the first encountered index pulse and continues until the next index pulse. All Gap, Header, and data bytes are assembled and transferred to the data register and DRO's are generated for each byte. The accumulation of bytes is synchronized to each address mark encountered. An interrupt is generated at the completion of the command.

This command has several characteristics which make it suitable for diagnostic purposes. They are: the Read Gate

is not activated during the command; no CRC checking is performed; gap information is included in the data stream; the internal side compare is not performed; and the address mark detector is on for the duration of the command Because the A.M. detector is always on, write splices or noise may cause the chip to look for an A M. If an address mark does not appear on schedule the Lost Data status flag is set.

The ID A M, ID field, ID CRC bytes, DAM, Data, and Data CRC Bytes for each sector will be correct. The Gap Bytes may be read incorrectly during write-splice time because of synchronization.

TYPE III COMMAND WRITE TRACK

TYPE III COMMAND WRITE TRACK

CONTROL BYTES FOR INITIALIZATION

DATA PATTERN	FD179X INTERPRETATION	FD1791/3 INTERPRETATION
IN DR (HEX)	IN FM (DDEN = 1)	IN MFM (DDEN = 0)
00 thru F4 F5 F6 F7 F8 thru FB FC FD FE FF	Write 00 thru F4 with CLK = FF Not Allowed Not Allowed Generate 2 CRC bytes Write F6 thru FB, Clk = C7, Preset CRC Write FC with Clk = D7 Write FD with Clk = FF Write FE, Clk = C7, Preset CRC Write FF with Clk = FF	Write 00 thru F4, in MFM Write A1* in MFM, Preset CRC Write C2** in MFM Generate 2 CRC bytes Write F8 thru FB, in MFM Write FC in MFM Write FE in MFM Write FE in MFM Write FF in MFM

^{*}Missing clock transition between bits 4 and 5

WRITE TRACK FORMATTING THE DISK

(Refer to section on Type III commands for flow diagrams.)

Formatting the disk is a relatively simple task when operating programmed I/O or when operating under DMA with a large amount of memory. Data and gap information must be provided at the computer interface Formatting the disk is accomplished by positioning the R/W head over the desired track number and issuing the Write Track command.

Upon receipt of the Write Track command, the head is loaded and the Busy Status bit is set. Writing starts with the leading edge of the first encountered index pulse and continues until the next index pulse, at which time the interrupt is activated. The Data Request is activated immediately upon receiving the command, but writing will not start until after the first byte has been loaded into the Data Register. If the DR has not been loaded by the time the index pulse is encountered the operation is terminated making the device Not Busy, the Lost Data Status Bit is set, and the Interrupt is activated. If a byte is not present in the DR when needed, a byte of zeroes is substituted.

This sequence continues from one index mark to the next index mark. Normally, whatever data pattern appears in the data register is written on the disk with a normal clock pattern. However, if the FD179X detects a data pattern of F5 thru FE in the data register, this is interpreted as data address marks with missing clocks or CRC generation.

The CRC generator is initialized when any data byte from F8 to FE is about to be transferred from the DR to the DSR in FM or by receipt of F5 in MFM. An F7 pattern will generate two CRC characters in FM or MFM. As a consequence, the patterns F5 thru FE must not appear in the gaps, data fields, or ID fields Also, CRC's must be generated by an F7 pattern.

Disks may be formatted in IBM 3740 or System 34 formats with sector lengths of 128, 256, 512, or 1024 bytes.

TYPE IV COMMANDS

The Forced Interrupt command is generally used to terminate a multiple sector read or write command or to in-

sure Type I status in the status register. This command can be loaded into the command register at any time. If there is a current command under execution (busy status bit set) the command will be terminated and the busy status bit reset

The lower four bits of the command determine the conditional interrupt as follows:

10 = Not-Ready to Ready Transition

11 = Ready to Not-Ready Transition

12 = Every Index Pulse

13 = Immediate Interrupt

The conditional interrupt is enabled when the corresponding bit positions of the command $(^13 \cdot ^10)$ are set to a 1. Then, when the condition for interrupt is met, the INTRQ line will go high signifying that the condition specified has occurred If $^13 \cdot ^10$ are all set to zero (HEX D0), no interrupt will occur but any command presently under execution will be immediately terminated When using the immediate interrupt condition $(^3 = 1)$ an interrupt will be immediately generated and the current command terminated Reading the status or writing to the command register will not automatically clear the interrupt. The HEX D0 is the only command that will enable the immediate interrupt (HEX D8) to clear on a subsequent load command register or read status register operation. Follow a HEX D8 with D0 command.

Wait 8 micro sec (double density) or 16 micro sec (single density before issuing a new command after issuing a forced interrupt (times double when clock = 1 MHz) Loading a new command sooner than this will nullify the forced interrupt

Forced interrupt stops any command at the end of an internal micro-instruction and generates INTRO when the specified condition is met. Forced interrupt will wait until ALU operations in progress are complete (CRC calculations, compares, etc.).

More than one condition may be set at a time If for example, the READY TO NOT-READY condition $(^11 = 1)$ and the Every Index Pulse $(^12 = 1)$ are both set, the resultant command would be HEX "DA". The "OR" function is performed so that either a READY TO NOT- READY or the next Index Pulse will cause an interrupt condition.

^{**}Missing clock transition between bits 3 & 4

STATUS REGISTER

Upon receipt of any command, except the Force Interrupt command, the Busy Status bit is set and the rest of the status bits are updated or cleared for the new command if the Force Interrupt Command is received when there is a current command under execution, the Busy status bit is reset, and the rest of the status bits are unchanged. If the Force Interrupt command is received when there is not a current command under execution, the Busy Status bit is reset and the rest of the status bits are updated or cleared. In this case, Status reflects the Type I commands.

The user has the option of reading the status register through program control or using the DRQ line with DMA or interrupt methods. When the Data register is read the DRQ bit in the status register and the DRQ line are automatically reset. A write to the Data register also causes both DRQ's to reset

The busy bit in the status may be monitored with a user program to determine when a command is complete, in lieu of using the INTRQ line. When using the INTRQ, a busy status check is not recommended because a read of the status register to determine the condition of busy will reset the INTRQ line

The format of the Status Register is shown below:

(BITS)							
7 6 5 4 3 2 1 0						0	
S7	S6	S5	S4	S3	S2	S1	S0

Status varies according to the type of command executed as shown in Table 4

Because of internal sync cycles, certain time delays must be observed when operating under programmed I/O. They are: (times double when clock = 1 MHz)

		Delay Reg'd.		
Operation	Next Operation	FM	MFM	
Write to Command Reg.	Read Busy Bit (Status Bit 0)	12 µS	6μs	
Write to Command Reg.	Read Status Bits 1-7	28 µs	14 μs	
Write Any Register	Read From Diff. Register	0	0 	

IBM 3740 FORMAT - 128 BYTES/SECTOR

Shown below is the IBM single-density format with 128 bytes/sector in order to format a diskette, the user must issue the Write Track command, and load the data register with the following values. For every byte to be written, there is one Data Request.

IBM 3740 FORMAT - 128 BYTES/SECTOR

Shown below is the IBM single-density format with 128 bytes/sector. In order to format a diskette, the user must issue the Write Track command, and load the data register with the following values. For every byte to be written, there is one Data Request.

NUMBER OF BYTES	HEX VALUE OF BYTE WRITTEN			
40	FF (or 00)1			
6	00			
1	FC (Index Mark)			
• 26	FF (or 00)'			
6	00			
1	FE (ID Address Mark)			
1	Track Number			
1	Side Number (00 or 01)			
1	Sector Number (1 thru 1A)			
1	00 (Sector Length)			
1	F7 (2 CRC's written)			
11	FF (or 00)1			
6	00			
1	FB (Data Address Mark)			
128	Data (IBM uses E5)			
1	F7 (2 CRC's written)			
27	FF (or 00)'			
247**	FF (or 00) ¹			

- *Write bracketed field 26 times
- **Continue writing until FD179X interrupts out. Approx. 247 bytes.
- 1-Optional '00' on 1795/7 only

IBM SYSTEM 34 FORMAT- 256 BYTES/SECTOR

Shown below is the IBM dual-density format with 256 bytes/sector. In order to format a diskette the user must issue the Write Track command and load the data register with the following values. For every byte to be written, there is one data request

r				
NUMBER	HEX VALUE OF			
OF BYTES	BYTE WRITTEN			
80	4E			
12	00			
3	F6 (Writes C2)			
1	FC (Index Mark)			
* 50	4E			
12	00			
3	F5 (Writes A1)			
]	FE (ID Address Mark)			
1	Track Number (0 thru 4C)			
1 1	Side Number (0 or 1)			
[] 1	Sector Number (1 thru 1A)			
1	01 (Sector Length)			
1	F7 (2 CRCs written)			
22	4E			
12	00			
3	F5 (Writes A1)			
1	FB (Data Address Mark)			
256	DATA			
1	F7 (2 CRCs written)			
54	4E			
598**	4E			

- *Write bracketed field 26 times
- **Continue writing until FD179X interrupts out. Approx 598 bytes

IBM TRACK FORMAT

1. NON-IBM FORMATS

Variations in the IBM formats are possible to a limited extent if the following requirements are met:

- 1) Sector size must be 128, 256, 512 or 1024 bytes
- 2) Gap 2 cannot be varied from the IBM format.
- 3) 3 bytes of A1 must be used in MFM.

In addition, the Index Address Mark is not required for operation by the FD179X Gap 1, 3, and 4 lengths can be as short as 2 bytes for FD179X operation, however PLL lock up time, motor speed variation, write-splice area, etc. will add more bytes to each gap to achieve proper operation It is recommended that the IBM format be used for highest system reliability.

	FM	MFM
Gap I	16 bytes FF	32 bytes 4E
Gap II	11 bytes FF	22 bytes 4E
:	6 bytes 00	12 bytes 00 3 bytes A1
Gap III**	10 bytes FF 4 bytes 00	24 bytes 4E 8 bytes 00 3 bytes A1
Gap IV	16 bytes FF	16 bytes 4E

^{*}Byte counts must be exact.

^{**}Byte counts are minimum, except exactly 3 bytes of A1 must be written.

READ ENABLE TIMING

TIMING CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{DD} = \pm 12V \pm .6V$, $V_{SS} = 0V$, $V_{CC} = \pm 5V \pm .25V$

READ ENABLE TIMING (See Note 6, Page 21)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
TSET	Setup ADDR & CS to RE	50			nsec	
THLD	Hold ADDR & CS from RE	10			nsec	
TRE	RE Pulse Width	400			nsec	$C_L = 50 \text{ pf}$
TDRR	DRQ Reset from RE		400	500	nsec	
TIRR	INTRQ Reset from RE		500	3000	nsec	See Note 5
TDACC	Data Access from RE			350	nsec	C _L = 50 pf
TDOH	Data Hold From RE	50		150	nsec	$C_L = 50 \text{ pf}$

WRITE ENABLE TIMING (See Note 6, Page 21)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
TSET THLD TWE TDRR TIRR TDS TDH	Setup ADDR & CS to WE Hold ADDR & CS from WE WE Pulse Width DRQ Reset from WE INTRQ Reset from WE Data Setup to WE Data Hold from WE	50 10 350 250 70	400 500	500 3000	nsec nsec nsec nsec nsec nsec	See Note 5

INPUT DATA TIMING

WRITE ENABLE TIMING

INPUT DATA TIMING:

IN OI DAIA II	winta.					
SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Tpw	Raw Read Pulse Width	100	200		nsec	See Note 1
tbc	Raw Read Cycle Time	1500	2000		nsec	1800 ns @ 70°C
Tc	RCLK Cycle Time	1500	2000		nsec	1800 ns @ 70°C
Txı	RCLK hold to Raw Read	40			nsec	See Note 1
Tx2	Raw Read hold to RCLK	40			nsec	See Note 1

WRITE DATA TIMING: (ALL TIMES DOUBLE WHEN CLK = 1 MHz) (See Note 6, Page 21)

SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Twp	Write Data Pulse Width		500	650	nsec	FM
Twg	Write Gate to Write Data		200 2 1	350	nsec μsec μsec	MFM FM MFM
Tbc	Write data cycle Time		2,3, or 4		μsec	±CLK Error
Ts	Early (Late) to Write Data	125			nsec	MFM
Th	Early (Late) From Write Data	125			nsec	MFM
Twf	Write Gate off from WD		2 1		μsec μsec	FM MFM
Twdl	WD Valid to Clk	100 50			nsec nsec	CLK=1 MHZ CLK=2 MHZ
Twd2	WD Valid after CLK	100 30			nsec nsec	CLK=1 MHZ CLK=2 MHZ

WRITE DATA TIMING

MISCELLANEOUS TIMING: (Times Double When Clock = 1 MHz) (See Note 6, Page 21)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
TCD ₁ TCD ₂ TSTP TDIR TMR TIP TWF	Clock Duty (low) Clock Duty (high) Step Pulse Output Dir Setup to Step Master Reset Pulse Width Index Pulse Width Write Fault Pulse Width	230 200 2 or 4 50 10	250 250 12	20000 20000	nsec nsec µsec µsec µsec µsec µsec	See Note 5 ± CLK ERROR See Note 5

NOTES:

- Pulse width on RAW READ (Pin 27) is normally 100-300 ns. However, pulse may be any width if pulse is entirely within window. If pulse occurs in both windows, then pulse width must be less than 300 ns for MFM at CLK = 2 MHz and 600 ns for FM at 2 MHz. Times double for 1 MHz.
- 2 A PPL Data Separator is recommended for 8" MFM.
- 3 tbc should be 2 μ s, nominal in MFM and 4 μ s nominal in FM. Times double when CLK = 1 MHz.
- RCLK may be high or low during RAW READ (Polarity is unimportant).
- 5. Times double when clock = 1 MHz.
- Output timing readings are at V_{OL} = 0.8v and V_{OH} = 2.0v.

MISCELLANEOUS TIMING

FROM STEP RATE TABLE

Table 4. STATUS REGISTER SUMMARY

BIT	ALL TYPE I COMMANDS	READ ADDRESS	READ SECTOR	READ TRACK	WRITE SECTOR	WRITE TRACK
S7	NOT READY	NOT READY	NOT READY	NOT READY	NOT READY	NOT READY
S6	WRITE PROTECT	0	0	0	WRITE PROTECT	WRITE PROTECT
S5	HEAD LOADED	0	RECORD TYPE	0	WRITE FAULT	WRITE FAULT
S4	SEÉK ERROR	RNF	RNF	О	RNF	0
S3	CRC ERROR	CRC ERROR	CRC ERROR	0	CRC ERROR	0
S2	TRACK 0	LOST DATA	LOST DATA	LOST DATA	LOST DATA	LOST DATA
S1	INDEX PULSE	DRQ	DRQ	DRQ	DRQ	DRQ
S0	BUSY	BUSY	BUSY	BUSY	BUSY	BUSY

STATUS FOR TYPE I COMMANDS

BIT NAME	MEANING
S7 NOT READY	This bit when set indicates the drive is not ready. When reset it indicates that the drive is ready. This bit is an inverted copy of the Ready input and logically 'ored' with MR.
S6 PROTECTED	When set, indicates Write Protect is activated This bit is an inverted copy of WRPT input.
S5 HEAD LOADED	When set, it indicates the head is loaded and engaged. This bit is a logical "and" of HLD and HLT signals.
S4 SEEK ERROR	When set, the desired track was not verified. This bit is reset to 0 when updated
S3 CRC ERROR	CRC encountered in ID field.
S2 TRACK 00	When set, indicates Read/Write head is positioned to Track 0. This bit is an inverted copy of the TROO input.
S1 INDEX	When set, indicates index mark detected from drive. This bit is an inverted copy of the $\overline{\text{IP}}$ input.
S0 BUSY	When set command is in progress. When reset no command is in progress

STATUS FOR TYPE II AND III COMMANDS

	MEANING
	This bit when set indicates the drive is not ready. When reset, it indicates that the drive is ready. This bit is an inverted copy of the Ready input and 'ored' with MR. The Type II and III Commands will not execute unless the drive is ready.
	On Read Record: Not Used On Read Track: Not Used On any Write: It indicates a Write Protect. This bit is reset when updated.
S5 RECORD TYPE/ WRITE FAULT	On Read Record: It indicates the record-type code from data field address mark. 1 = Deleted Data Mark. 0 = Data Mark. On any Write: It indicates a Write Fault. This bit is reset when updated.
S4 RECORD NOT FOUND (RNF)	When set, it indicates that the desired track, sector, or side were not found. This bit is reset when updated.
S3 CRC ERROR	If S4 is set, an error is found in one or more ID fields; otherwise it indicates error in data field. This bit is reset when updated.
S2 LOST DATA	When set, it indicates the computer did not respond to DRQ in one byte time. This bit is reset to zero when updated.
S1 DATA REQUEST	This bit is a copy of the DRQ output. When set, it indicates the DR is full on a Read Operation or the DR is empty on a Write operation. This bit is reset to zero when updated.
S0 BUSY	When set, command is under execution When reset, no command is under execution

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings V_{DD} with repect to V_{SS} (ground): +15 to -0.3VVoltage to any input with respect to $V_{SS} = +15 \text{ to } -0.3\text{V}$

Icc = 60 MA (35 MA nominal) lop = 15 MA (10 MA nominal) C_{IN} & $C_{OUT} = 15 \, pF$ max with all pins grounded except one under test

Operating temperature = 0°C to 70°C Storage temperature = -55°C to + 125°C

OPERATING CHARACTERISTICS (DC)

TA = 0°C to 70°C, $V_{DD} = + 12V \pm .6V$, $V_{SS} = 0V$, $V_{CC} = + 5V \pm .25V$

YMBOL	CHARACTERISTIC	MIN.	MAX.	UNITS	CONDITIONS
IIL IOL VIH VIL VOH VOL	Input Leakage Output Leakage Input High Voltage Input Low Voltage Output High Voltage Output Low Voltage Power Dissipation	2.6	10 10 0.8 0.45 0.6	μ4 μ4 >> > > >	$V_{IN} = V_{DD}^{\bullet,\bullet}$ $V_{OUT} = V_{DD}$ $I_{O} = -100 \mu\text{A}$ $I_{O} = 16 \text{mA}^{\bullet}$

 $^{^{1792}}$ and 1794 $^{10} = 1.0$ mA

^{*}Leakage conditions are for input pins without internal pull-up resistors. Pins 22, 23, 33, 36, and 37 have pull-up resistors. See Tech Memo #115 for testing procedures.

40 LEAD CERAMIC "A" or "AL"

40 LEAD RELPACK "B" or "BL"

40 LEAD CERDIP "CL"

40 LEAD PLASTIC "P" or "PL"

Information furnished by Western Digital Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Western Digital Corporation for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Western Digital Corporation. Western Digital Corporation reserves the right to change specifications at anytime without notice.

TECHNICAL MEMO WESTERN DIGITAL

MEMO: 169

2445 McCabe Way Irvine. California 92714 (714) 557-3550 TWX 910-595-1139

DEVICE: WD1770/1772/1773

TITLE: Preliminary Data Sheet Update

DATE: 8/29/83

The following information represents updates to the current WD1770/72/73 Preliminary Data sheet. These updates are performance enhancements.

TRE (Page 19) Changed from MIN 150NS to MIN 200NS. 1.

- TAH (Page 19) Changed from MIN 20NS to 10NS. 2.
- TWE (Page 19) Changed from MIN 150NS to MIN 200NS. 3.
- H bit in Command (Page 6 last paragraph) 4. Changed from: "If the hFlag is set and motor on line (Pin 20)"

Changed to: "If the hFlag is $\underline{\text{NOT}}$ set and motor on line (Pin 20)"

WESTERN DIGITAL C O R P O R A T / O N

PREIMARA

WD1773 51/4" Floppy Disk Controller/Formatter

FEATURES

- 100% SOFTWARE COMPATIBILITY WITH WD1793
- BUILT-IN DATA SEPARATOR
- BUILT-IN WRITE PRECOMPENSATION
- SINGLE (FM) AND DOUBLE (MFM) DENSITY
- 28 PIN DIP, SINGLE +5V SUPPLY
- TTL COMPATIBLE INPUTS/OUTPUTS
- 128, 256, 512 OR 1024 SECTOR LENGTHS
- 8-BIT BI-DIRECTIONAL HOST INTERFACE

A0 CAN A1	1 2 3 4 4 5 6 6 7 7 8 9 9:0 11 11 12 13 14	28 INTRO 27 DRO 26 DDEN 25 WPRT 24 IP 23 TRO 22 WD 21 WG 20 ENPIRD 19 an 18 CLK 17 DIRC 16 STEP 15 VCC

PIN DESIGNATION

DESCRIPTION

The WD1773 is an MOS/LSI device which performs the functions of a 54a'' Floppy Disk Controller/ Formatter. It is fully software compatible with the Western Digital WD1793-02, allowing the designer to reduce parts count and board size on an existing WD1793 based design without software modifications.

With the exception of the enable Precomp/Ready line, the WD1773 is identical to the WD1770 controller. This line serves as both a READY input from the drive during READ/STEP operations, and as a Write Precompensation enable during Write operations. A built-in digital data separator virtually eliminates all external components associated with data recovery in previous designs.

The WD1773 is implemented in NMOS silicon gate technology and is available in a 28 pin, dual-in-line package.

PIN DESCRIPTION

PIN					
NUMBER	PIN NAME	MNEMONIC	FUNCTION		
1	CHIP SELECT	CS	A logic low on this input selects the chip and enable Host communication with the device.		
2	READ/WRITE	R/W	A logic high on this input controls the placement of data on the D0-D7 lines from a selected register, while a logic low causes a write operation to a selected register.		
3,4	ADDRESS 0,1	A0, A1	These two inputs select a register to Read/Write data: \overline{CS} A1 A0 $R/\overline{W} = 1$ $R/\overline{W} = 0$		
		77	0 0 0 Status Reg Command Reg 0 0 1 Track Reg Track Reg 0 1 0 Sector Reg Sector Reg 0 1 Data Reg Data Reg		
5-12	DATA ACCESS LINES 0 THROUGH 7	DAL0-DAL7	Eight bit bidirectional bus used for transfer of data, control, or status. This bus is enabled by CS and RW. Each line will drive one TTL load.		
13	MASTER RESET	MR	A logic low pulse on this line resets the device and initializes the status register. Internal pullup.		
14	GROUND	GND	Ground.		
15	POWER SUPPLY	Vcc	+5V ±5% power supply input.		
16	STEP	STEP	The Step output contains a pulse for each step of the drive's R/W head.		
17	DIRECTION	DIRC	The Direction output is high when stepping in towards the center of the diskette, and low when stepping out.		
18	CLOCK	CLK	This input requires a free-running 40 to 60% duty cycle clock (for internal timing) at 8 MHZ ± 1%.		
19	READ DATA	RD	This active low input is the raw data line containing both clock and data pulses from the drive.		
20	ENABLE PRECOMPI READY LINE	ENP/RDY	Serves as a READY input from the drive during READ/STEP operations and as a Write Precomp enable during write operations.		
21	WRITE GATE	WG	This output is made valid prior to writing on the diskette.		
22	WRITE DATA	WD	FM or MFM clock and data pulses are placed on this line to be written on the diskette.		
23	TRACK 00	TR00	This active low input informs the WD1773 that the drive's RW heads are positioned over Track zero.		
24	INDEX PULSE	ĪP	This active low input informs the WD1773 when the physical index hole has been encountered on the diskette.		
25	WRITE PROTECT	WPRT	This input is sampled whenever a Write Command is received. A logic low on this line will prevent any Write Command from executing. Internal pull-up.		
26	DOUBLE DENSITY ENABLE	DDEN	This input pin selects either single (FM) or double (MFM) density. When DDEN = 0, double density is selected. Internal pull-up.		

PIN DESCRIPTION (CONTINUED)

PIN NUMBER	PIN NAME	MNEMONIC	FUNCTION
27	DATA REQUEST	DRQ	This active high output indicates that the Data Register is full (on a Read) or empty (on a Write operation).
28	INTERRUPT REQUEST	INTRQ	This active high output is set at the completion of any command or reset a read of the Status Register.

WD1773 SYSTEM BLOCK DIAGRAM

ARCHITECTURE

The Floppy Disk Formatter block diagram is illustrated on page 4. The primary sections include the parallel processor interface and the Floppy Disk interface.

Data Shift Register — This 8-bit register assembles serial data from the Read Data input (RD) during Read operations and transfers serial data to the Write Data output during Write operations.

Data Register — This 8-bit register is used as a holding register during Disk Read and Write operations. In Disk Read operations, the assembled data byte is transferred in parallel to the Data Register from the Data Shift Register. In Disk Write operations, information is transferred in parallel from the Data Register to the Data Shift Register.

When executing the Seek command, the Data Register holds the address of the desired Track position.

This register is loaded from the DAL and gated onto the DAL under processor control.

Track Register — This 8-bit register holds the track number of the current Read/Write head position. It is incremented by one every time the head is stepped in and decremented by one when the head is stepped out (towards track 00). The contents of the register are compared with the recorded track number in the ID field during disk Read, Write, and Verify operations. The Track Register can be loaded from or transferred to the DAL This Register should not be loaded when the device is busy.

Sector Register (SR) — This 8-bit register holds the address of the desired sector position. The contents of the register are compared with the recorded sector number in the ID field during disk Read or Write operations. The Sector Register contents can be loaded from or transferred to the DAL. This register should not be loaded when the device is busy.

Command Register (CR) — This 8-bit register holds the command presently being executed. This register should not be loaded when the device is busy unless the new command is a force interrupt. The command register can be loaded from the DAL, but not read onto the DAL.

Status Register (STR) — This 8-bit register holds device Status information. The meaning of the Status bits is a function of the type of command previously executed. This register can be read onto the DAL, but not loaded from the DAL.

CRC Logic — This logic is used to check or to generate the 16-bit Cyclic Redundancy Check (CRC). The polynomial is:

 $G(x) = x^{16} + x^{12} + x^{5} + 1$

The CRC includes all information starting with the address mark and up to the CRC characters. The CRC register is preset to ones prior to data being shifted through the circuit.

Arithmetic/Logic Unit (ALU) — The ALU is a serial comparator, incrementer, and decrementer and is used for register modification and comparisons with the disk recorded ID field.

WD1773 BLOCK DIAGRAM

Timing and Control — All computer and Floppy Disk interface controls are generated through this logic. The internal device timing is generated from an external crystal clock. The WD1773 has two different modes of operation according to the state of DDEN. When DDEN = 0, double density (MFM) is enabled. When DDEN = 1, single density is enabled.

AM Detector — The address mark detector detects ID, data and index address marks during read and write operations.

Data Separator — A digital data separator consisting of a ring shift register and data window detection logic provides read data and a recovery clock to the AM detector.

PROCESSOR INTERFACE

The interface to the processor is accomplished through the eight Data Access Lines (DAL) and associated control signals. The DAL are used to transfer Data, Status, and Control words out of, or into the WD1773. The DAL are three state buffers that are enabled as output drivers when Chip Select (CS) and RW = 1 are active or act as input receivers when CS and RW = 0 are active.

When transfer of data with the Floppy Disk Controller is required by the host processor, the device address is decoded and CS is made low. The address bits A1 and A0, combined with the signal R/W during a Read operation or Write operation are interpreted as selecting the following registers:

A1	- A0	READ (R/W = 1)	WRITE $(R/W = 0)$
0	0	Status Register	Command Register
0	1	Track Register	Track Register
1	0	Sector Register	Sector Register
1	1	Data Register	Data Register

During Direct Memory Access (DMA) types of data transfers between the Data Register of the WD1773 and the processor, the Data Request (DRQ) output is used in Data Transfer control. This signal also appears as status bit 1 during Read and Write operations.

On Disk Read operations the Data Request is activated (set high) when an assembled serial input byte is transferred in parallel to the Data Register. This bit is cleared when the Data Register is read by the processor. If the Data Register is read after one or more characters are lost, by having new data transferred into the register prior to processor readout, tire Losi Data bit is set in the Status Register. The Read operations continues until the end of sector is reached.

On Disk Write operations the Data Request is activated when the Data Register transfers its contents to the Data Shift Register, and requires a new data byte. It is reset when the Data Register is loaded with new data by the processor. If new data is not loaded at the time the next serial byte is required by the Floppy Disk, a byte of zeroes is written on the diskette and the Lost Data is set in the Status Register.

At the completion of every command an INTRQ is generated. INTRQ is reset by either reading the status register or by loading the command register with a new command. In addition, INTRQ is generated if a Force Interrupt command condition is met.

The WD1773 has two modes of operation according to the state DDEN (Pin 26). When DDEN = 1, single density is selected. In either case, the CLK input (Pin 18) is at 8 MHZ

GENERAL DISK READ OPERATIONS

Sector lengths of 128, 256, 512 or 1024 are obtainable in either FM or MFM formats. For FM, DDEN should be placed to logical "1" For MFM formats, DDEN should be placed to a logical "0." Sector lengths are determined at format time by the fourth byte in the "ID" field.

SECTOR LE	NGTH TABLE
SECTOR LENGTH FIELD (HEX)	NUMBER OF BYTES IN SECTOR (DECIMAL)
00	128
01	256
02	512
03	1024

The number of sectors per tract as far as the WD1773 is concerned can be from 1 to 255 sectors. The

number of tracks as far as the WD1773 is concerned is from 0 to 255 tracks.

GENERAL DISK WRITE OPERATION

When writing is to take place on the diskette the Write Gate (WG) output is activated, allowing current to flow into the Read/Write head. As a precaution to erroneous writing the first data byte must be loaded into the Data Register in response to a Data Request from the device before the Write Gate signal can be activated.

Writing is inhibited when the Write Protect input is a logic low, in which case any Write command is immediately terminated, an interrupt is generated and the Write Protect status bit is set.

For Write operations, the WD1773 provides Write Gate (Pin 21) to enable a Write condition, and Write Data (Pin 22) which consists of a series of active high pulses. These pulses contain both Clock and Data information in FM and MFM. Write Data provides the unique missing clock patterns for recording Address Marks.

If Precomp Enable (ENP) is active when WG is asserted, automatic Write Precompensation takes place. The outgoing Write Data stream is delayed or advanced from nominal by 125 nanoseconds according to the following table:

	PATI	ERN		MFM	FM
X	1	1	0	Early	N/A
X	اما	1	1	Late	N/A
l ô	lő	o	1	Early	N/A
1	Ö	Ō	0	Late	N/A

Next Bit to be sent Current Bit sending Previous Bits sent

Precompensation is typically enabled on the innermost tracks where bit shifts usually occur and bit density is at its maximun.

COMMAND DESCRIPTION

The WD1773 will accept eleven commands. Command words should only be loaded in the Command Register when the Busy status bit is off (Status bit 0). The one exception is the Force Interrupt command. Whenever a command is being executed, the Busy status bit is set. When a command is completed, an interrupt is generated and the Busy status bit is reset. The Status Register indicates whether the completed command encountered an error or was fault free. For ease of discussion, commands are divided into four types. Commands and types are summarized in Table 1.

TABLE 1. COMMAND SUMMARY

						BITS			
TYPE COMMAND	7	6	5	4	3	2	1	0	
I Restore	0	0	0	0	h	V	r ₁	ro	
Seek	0	I 0	0	1	h	V	r1	ro	
I Step	0	0	1	Т	h	V	rı	ro	
I Step-in	0	1	0	Т	h	V	r ₁	ro	
1 Step-out	0	1	1	Т	h	V	r 1	ro	
II Read Sector	1	0	0	m	Ĺ	Ė	Ú	Õ	
II Write Sector	1	0	1	m	L	Ē	Ü	aη	
III Read Address	1	1	0	0	0	Ē	Ū	o o	
III Read Track	1	1	1	0	0	E	Ũ	ō	
III Write Track	1	1	1	1	0	Ε	Ü	Ō	
IV Force Interrupt	1 1	1	0	1	ĺз	ĺ2	11	10	

FLAG SUMMARY

COMMAND TYPE	BIT NO(S)		DESCRIPTION
ı	0, 1	r1 r0 = Stepping Motor Rate See Table 3 for Rate Summary	
	2	V = Track Number Verify Flag	V = 0, No verify V = 1, Verify on destination track
1	3	h = Don't Care	
	4	T = Track Update Flag	T = 0, No update T = 1, Update track register
li li	0	a0 = Data Address Mark	$a_0 = 0$, FB (DAM) $a_0 = 1$, F8 (deleted DAM)
11	1	C = Side Compare Flag	C = 0, Disable side compare C = 1, Enable side compare
11 & 111	1	U = Update SSO	U = 0, Update SSO to 0 U = 1, Update SSO to 1
11 & 111	2	E = 15 MS Delay	E = 0, No 30 MS delay E = 1, 15 MS delay
11	3	S = Side Compare Flag	S = 0, Compare for side 0 S = 1, Compare for side 1
11	3	L = Sector Length Flag	
			LSB's Sector Length in ID Field 00 01 10 11
			L = 0 256 512 1024 128
			L = 1 128 256 512 1024
II	4	m = Multiple Record Flag	m = 0, Single record m = 1, Multiple records
IV	0-3	x = Interrupt Condition Flat 0 = 1 Not Ready To Ready To Ready To Ready To Not Ready To Not Ready To	gs Fransition Fransition Requires A Reset

^{*}NOTE: See Type IV Command Description for further information

TYPE I COMMANDS

The Type I Commands include the Restore, Seek, Step, Step-In, and Step-Out commands. Each of the Type I Commands contains a rate field (f0 11), which determines the stepping motor rate as defined in Table 3.

A 4 μ s (MFM) or 8 μ s (FM) pulse is provided as an output to the drive. For every step pulse issued, the drive moves one track location in a direction determined by the direction output. The chip will step the drive in the same direction it last stepped unless the command changes the direction.

The Direction signal is active high when stepping in and low when stepping out. The Direction signal is valid 24 or 48 μ sec before the first stepping pulse is generated.

When a Seek, Step or Restore command is executed an optional verification of Read-Write head position can be performed by settling bit 2 (V = 1) in the command word to a logic 1. The verification operation begins at the end of the 30 msec settling time. The track number from the first encountered ID Field is compared against the contents of the Track Register. If the track numbers compare and the ID Field Cyclic Redundancy Check (CRC) is correct, the verify operation is complete and an INTRQ is generated with no errors. If there is a match but not a valid CRC, the CRC error status bit is set (Status bit 3), and the next encountered ID field is read from the disk for the verification operation.

The WD1773 must find an ID field with correct track number and correct CRC within 5 revolutions of the media; otherwise the seek error is set and an INTRQ is generated. If V=0, no verification is performed.

RESTORE (SEEK TRACK 0)

Upon receipt of this command the Track 00 (TR00) input is sampled. If TR00 is active low indicating the Read-Write head is positioned over track 0, the Track Register is loaded with zeroes and an interrupt is generated. If TROO is not active low, stepping pulses at a rate specified by the r1 r0 field are issued until the TROO input is activated. At this time the Track Register is loaded with zeroes and an interrupt is generated. If the TR00 input does not go active low after 255 stepping pulses, the WD1773 terminates operation, interrupts, and sets the Seek error status bit, providing the V flag is set. A verification operation also takes place if the V flag is set. Note that the Restore command is executed when MR goes from an active to an inactive state and that the DRQ pin stays low.

SEEK

This command assumes that the Track Register contains the track number of he current position of the Read-Write head and the Data Register contains the desired track number. The WD1773 will update the Track register and issue stepping pulses in the appropriate direction until the contents of the Track

register are equal to the contents of the Data Register (the desired track location). A verification operation takes place if the V flag is on. An interrupt is generated at the completion of the command Note: When using multiple drives, the track register must be updated for the drive selected before seeks are issued.

STEP

Upon receipt of this command, the WD1773 issues one stepping pulse to the disk drive. The stepping motor direction is the same as in the previous step command. After a delay determined by the f1f0 field, a verification takes place if the V flag is on. If the U flag is on, the Track Register is updated. An interrupt is generated at the completion of the command.

STEP-IN

Upon receipt of this command, the WD1773 issues one stepping pulse in the direction towards track 76. If the U flag is on, the Track Register is incremented by one. After a delay determined by the Info field, a verification takes place if the V flag is on. An interrupt is generated at the completion of the command.

STEP-OUT

Upon receipt of this command, the WD1773 issues one stepping pulse in the direction towards track 0. If the U flag is on, the Track Register is decremented by one. After a delay determined by the f1f0 field, a verification takes place if the V flag is on. An interrupt is generated at the completion of the command.

TYPE II COMMANDS

The Type II Commands are the Read Sector and Write Sector commands. Prior to loading the Type II Command into the Command Register, the computer must load the Sector Register with the desired sector number. Upon receipt of the Type II command, the busy status Bit is set. The E flag is still active providing a delay of 1 to 30 msec for head settling time.

When an ID field is located on the disk, the WD1773 compares the Track Number on the ID field with the Track Register. If there is not a match, the next encountered ID field is read and a comparison is again made. If there was a match, the Sector Number of the ID field is compared with the Sector Register. If there is not a Sector match, the next encountered ID field is read off the disk and comparisons again made. If the ID field CRC is correct, the data field is then located and will be either written into, or read from depending upon the command. The WD1773 must find an ID field with a Track number, Sector number. side number, and CRC within five revolutions of the disk; otherwise, the Record not found status bit is set (Status bit 3) and the command is terminated with an interrupt.

Each of the Type II Commands contains an (m) flag which determines if multiple records (sectors) are to be read or written, depending upon the command. If m=0, a single sector is read or written and an inter-

rupt is generated at the completion of the command. if m = 1, multiple records are read or written with the sector register internally updated so that an address verification can occur on the next record. The WD1773 will continue to read or write multiple records and update the sector register in numerical ascending sequence until the sector register exceeds the number of sectors on the track or until the Force Interrupt command is loaded into the Command Register, which terminates the command and generates an interrupt.

For example: If the WD1773 is instructed to read sector 27 and there are only 26 on the track, the sector register exceeds the number available. The WD1773 will search for 5 disk revolutions, interrupt out, reset busy, and set the record not found status bit.

The Type II commands for WD1773 contain side compare flags. When C=0 (Bit 1) no side comparison is made. When C=1, the LSB of the side num-

TYPE I COMMAND FLOW

ber is read off the ID Field of the disk and compared with the contents of the (S) flag (Bit 3). If the S flag compares with the side number recorded in the ID field, the WD1773 continues with the ID search. If a comparison is not made within 6 index pulses, the interrupt line is made active and the Record-Not-Found status bit is set.

READ SECTOR

Upon receipt of the Read Sector command, the Busy status bit is set, and when an ID field is encountered that has the correct track number, correct sector number, correct side number, and correct CRC, the data field is presented to the computer. The Data Address Mark of the data field must be found within 30 bytes in single density and 43 bytes in double density of the last ID field CRC byte; if not, the ID field is searched for and verified again followed by the Data Address Mark search. If after 5 revolutions the DAM cannot be found, the Record Not Found status bit is set and the operation is terminated.

TYPE I COMMAND FLOW

When the first character or byte of the data field has been shifted through the DSR, it is transferred to the DR, and DRQ is generated. When the next byte is accumulated in the DSR, it is transferred to the DR and another DRQ is generated. If the Computer has not read the previous contents of the DR before a new character is transferred that character is lost and the Lost Data Status bit is set. This sequence continues until the complete dta field has been inputted to the computer. If there is a CRC error at the end of the data field, the CRC error status bit is set, and the command is terminated (even if it is a multiple record command).

At the end of the Read operation, the type of Data Address Mark encountered in the data field is recorded in the Status Register (Bit 5) as shown below:

STATUS BIT 5	
4	n

1	Deleted Data Mar
0	Data Mark

WRITE SECTOR

Upon receipt of the Write Sector command, the Busy status bit is set When an ID field is encountered that has the correct track number, correct sector number, correct side number, and correct CRC, a DRQ is generated. The WD1773 counts off 11 bytes in single density and 22 bytes in double density from the CRC field and the Write Gate (WG) output is made active if the DRQ is serviced (i.e., the DR has been loaded by

TYPE II COMMAND FLOW

the computer). If DRQ has not been serviced, the command is terminated and the Lost Data status bit is set. If the DRQ has been serviced, the WG is made active and six bytes of zeroes in single density and 12 bytes in double density are then written on the disk. At this time the Data Address Mark is then written on

the disk as determined by the a0 field of the command as shown below:

a ₀	Data Address Mark (Bit 0)
1	Deleted Data Mark
0	Data Mark

The WD1773 then writes the data field and generates DRO's to the computer. If the DRQ is not serviced in time for continuous writing the Lost Data Status Bit is set and a byte of zeroes is written on the disk. The command is not terminated. After the last data byte has been written on the disk, the two-byte CRC is computed internally and written on the disk followed by one byte of logic ones in FM or in MFM. The WG output is then deactivated. The INTRQ will set 48 $\mu \rm{sec}$ (MFM) or 96 $\mu \rm{sec}$ (FM) after the last CRC byte is written. For partial sector writing, the proper method is to write the data and fill the balance with zeroes. By letting the chip fill the

INDEX HOLES INTRO. RESET BUSY SET RECORD NOT FOUND MAGI HAS BEEN DETECTED YES TR = TRACK ADDRESS OF ID FIELD YES YES = SIDE NO OF ID FIELD YES BRING IN SECTOR LENGTH FIELD STORE LENGTH IN INTERNAL REGISTER SET CRC STATUS ERROR COMMAND NO IS A WRITE READ YES 3

TYPE II COMMAND FLOW

zeroes, errors may be masked by the lost data status and improper CRC Bytes.

TYPE III COMMANDS

READ ADDRESS

Upon receipt of the Read Address command, the Busy Status Bit is set. The next encountered ID field is then read in from the disk, and the six data bytes of the ID field are assembled and transferred to the DR, and a DRQ is generated for each byte. The six bytes of the ID field are shown below:

TRACK	SIDE	SECTOR	SECTOR	CRC	CRC
ADDR	NUMBER	ADDRESS	LENGTH	1	2
1	2	3	4	5	6

TYPE II COMMAND FLOW

TYPE II COMMAND

Although the CRC characters are transferred to the computer, the WD1773 checks for validity and the CRC error status bit is set if there is a CRC error. The Track Address of the ID field is written into the sector register so that a comparison can be made by the user. At the end of the operation an interrupt is generated and the Busy Status is reset.

READ TRACK

Upon receipt of the READ track command, the Busy Status bit is set. Reading starts with the leading edge of the first encountered index pulse and continues until the next index pulse. All Gap, Header, and data bytes are assembled and transferred to the data register and DRQ's are generated for each byte. The accumulation of bytes is synchronized to each address mark encountered. An interrupt is generated at the completion of the command.

This command has several characteristics which

make it suitable for diagnostic purposes. They are: the Read Gate is not activated during the command; no CRC checking is performed; gap information is included in the data stream; the internal side compare is not performed; and the address mark detector is on for the duration of the command. Because the A.M. detector is always on, write splices or noise may cause the chip to look for an A.M. If an address mark does not appear on schedule the Lost Data status flag is set.

The ID A.M., ID field, ID CRC bytes, DAM, Data, and Data CRC Bytes for each sector will be correct. The Gap Bytes may be read incorrectly during write-splice time because of synchronization.

WRITE TRACK FORMATTING THE DISK

(Refer to section on Type III commands for flow diagrams.)

Formatting the disk is a relatively simple task when operating programmed I/O or when operating under DMA with a large amount of memory. Data and gap information must be provided at the computer interface. Formatting the disk is accomplished by positioning the R/W head over the desired track number and issuing the Write Track command.

Upon receipt of the Write Track command, the Busy Status bit is set. Writing starts with the leading edge of the first encountered index pulse and continues until the next index pulse, at which time the interrupt is activated The Data Request is activated immediately upon receiving the command, but writing will not start until after the first byte has been loaded into the Data Register. If the DR has not been loaded by the time the index pulse is encountered the operation is terminated making the device Not Busy, the Lost Data Status Bit is set, and the Interrupt is activated. If a byte is not present in the DR when needed, a byte of zeroes is substituted.

This sequence continues from one index mark to the next index mark. Normally, whatever data pattern appears in the data register is written on the disk with a normal clock pattern. However, if the WD1773 detects a data pattern of F5 thru FE in the data register, this is interpreted as data address marks with missing clocks or CRC generation.

The CRC generator is initialized when any data byte from F8 to FE is about to be tranferred from the DR to the DSR in FM or by receipt of F5 in MFM. An F7 pattern will generate two CRC characters in FM or MFM. As a consequence, the patterns F5 thru FE must not appear in the gaps, data fields, or ID fields. Also, CRC's must be generated by an F7 pattern.

Disks may be formatted in IBM 3740 or System 34 formats with sector lengths of 128, 256, 512, or 1024 bytes.

TYPE IV COMMANDS

The Forced Interrupt command is generally used to

terminate a multiple sector read or write command or to insure Type I status in the status register. This command can be loaded into the command register at any time. If there is a current command under execution (busy status bit set) the command will be terminated and the busy status bit reset.

The lower four bits of the command determine the conditional interrupt as follows:

0 = Not-Ready to Ready Transition

1 = Ready to Not-Ready Transition

12 = Every Index Pulse

3 = Immediate Interrupt

The conditional interrupt is enabled when the corresponding bit positions of the command $(3 \cdot 10)$ are set to a 1. Then, when the condition for interrupt is met, the INTRQ line will go high signifying that the condition specified has occurred. If $13 \cdot 10$ are all set to zero (HEX D0), no interrupt will occur but any command presently under execution will be immediately terminated. When using the immediate interrupt condition (3=1) an interrupt will be immediately generated and the current command terminated. Reading the status or writing to the command register will not automatically clear the interrupt. The HEX D0 is the only command that will enable the

TYPE III COMMAND WRITE TRACK

TYPE III COMMAND WRITE TRACK

immediate interrupt (HEX D8) to clear on a subsequent load command register or read status register operation. Follow a HEX D8 with D0 command.

Wait 16 μ sec (double density) or 32 μ sec (single density before issuing a new command after issuing a forced interrupt. Loading a new command sooner than this will nullify the forced interrupt.

Forced interrupt stops any command at the end of an internal micro-instruction and generates INTRQ when the specified condition is met. Forced interrupt will wait until ALU operations in progress are complete (CRC calculations, compares, etc.).

More than one condition may be set at a time. If for example, the READY TO NOT-READY condition (11 = 1) and the Every Index Pulse (12 = 1) are both set, the resultant command would be HEX "DA". The "OR" function is performed so that either a READY TO NOT-READY or the next Index Pulse will cause an interrupt condition.

STATUS REGISTER

Upon receipt of any command, except the Force Interrupt command, the Busy Status bit is set and the rest of the status bits are updated or cleared for the new command. If the Force Interrupt Command is received when there is a current command under execution, the Busy status bit is reset, and the rest of the status bits are unchanged. If the Force Interrupt command is received when there is not a current command under execution, the Busy Status bit is reset and the rest of the status bits are updated or cleared. In this case, Status reflects the Type I commands.

The user has the option of reading the status register through program control or using the DRQ line with DMA or interrupt methods. When the Data register is read the DRQ bit in the status register and the DRQ line are automatically reset. A write to the Data register also causes both DRQ's to reset.

The busy bit in the status may be monitored with a user program to determine when a command is complete, in lieu of using the INTRQ line. When using the INTRQ, a busy status check is not recommended because a read of the status register to determine the condition of busy will reset the INTRQ line.

The format of the Status Register is shown below:

(BITS)								
7 6 5 4 3 2 1 0								
S7 S6 S5 S4 S3 S2 S1 S0								

Status varies according to the type of command executed as shown in Table 4.

Because of internal sync cycles, certain time delays must be observed when operating under programmed I/O. They are: (times double when clock = 1 MHz)

		Delay Req'd.		
Operation	Next Operation	FM	MFM	
Write to Command Reg.	Read Busy Bit (Status Bit 0)	48 μs	24 µs	
Write to Command Reg.	Read Status Bits 1-7	64 µS	32 µs	
Write Register	Read Any Register	32 µs	16 µs	

IBM 3740 FORMAT - 128 BYTES/SECTOR

Shown below is the IBM single-density format with 128 bytes/sector. In order to format a diskette, the user must issue the Write Track command, and load the data register with the following values. For every byte to be written, there is one Data Request.

NUMBER	HEX VALUE OF
OF BYTES	BYTE WRITTEN
40	FF (or 00)1
6	00
1	FC (Index Mark)
26	FF (or 00)1
6	00
1	FE (ID Address Mark)
1	Track Number
1	Side Number (00 or 01)
1	Sector Number (1 thru 1A)
1	00 (Sector Length)
1	F7 (2 CRC's written)
11	FF (or 00)1
6	00
1	FB (Data Address Mark)
128	Data (IBM uses E5)
1	F7 (2 CRC's written)
27	FF (or 00)1
247**	FF (or 00) ¹

- *Write bracketed field 26 times
- **Continue writing until WD1773 interrupts out, Approx. 247 bytes.

IBM SYSTEM 34 FORMAT - 256 BYTES/SECTOR

Shown below is the IBM dual-density format with 256 bytes/sector. In order to format a diskette the user must issue the Write Track command and load the data register with the following values. For every byte to be written, there is one data request.

NUMBER OF BYTES	HEX VALUE OF BYTE WRITTEN
80	4E
12	00
3	F6 (Writes C2)
1	FC (Index Mark)
<u> </u>	4E
12	00
] 3	F5 (Writes A1)
1	FE (ID Address Mark)
1	Track Number (0 thru 4C)
1	Side Number (0 or 1)
	Sector Number (1 thru 1A)
1	01 (Sector Length)
1	F7 (2 CRCs written)
22	4E
12	00
3	F5 (Writes A1)
	FB (Data Address Mark)
256	DATA
	F7 (2 CRCs written)
54	4E
598**	4E

- *Write bracketed field 26 times
- **Continue writing until WD1773 interrupts out. Approx. 598 bytes.

1. NON-IBM FORMATS

Variations in the IBM formats are possible to a limited extent if the following requirements are met:

- 1) Sector size must be 128, 256, 512 of 1024 bytes.
- 2) Gap 2 cannot be varied from the IBM format.
- 3) 3 bytes of A1 must be used in MFM.

In addition, the Index Address Mark is not required for operation. Gap 1, 3, and 4 lengths can be as short as 2 bytes, however PLL lock up time, motor speed variation, write-splice area, etc. will add more bytes to each gap to achieve proper operation. It is recommended that the IBM format be used for highest system reliability.

	FM	MFM
Gap I	16 bytes FF	32 bytes 4E
Gap II	11 bytes FF	22 bytes 4E
*	6 bytes 00	12 bytes 00 3 bytes A1
Gap III**	10 bytes FF 4 bytes 00	24 bytes 4E 8 bytes 00 3 bytes A1
Gap IV	16 bytes FF	16 bytes 4E

- *Byte counts must be exact.
- **Byte counts are minimurn, except exactly 3 bytes of A1 must be written.

DC ELECTRICAL CHARACTERISTICS

MAXIMUM RATINGS

Storage Temperature 55°C to 4	- 125°C	Maximum Voltage to Any Input	
Operating Temperature 0°C to 70°C A	mbient	with Respect to VSS	(-15 to - 0.3V)

DC OPERATING CHARACTERISTICS

TA = 0°C to 70°C, $V_{SS} = 0V$, $V_{CC} = +5V \pm .25V$

SYMBOL	CHARACTERISTIC	MIN.	MAX.	UNITS	CONDITIONS
IIL	Input Leakage		10	μΑ	VIN = VCC
lOL.	Output Leakage		10	μΑ	Vout = Vcc
VIH	Input High Voltage	2.0		V	
VIL	Input Low Voltage		0.8	\ v	
Vон	Output High Voltage	2.4		V	$I_0 = -100 \mu\text{A}$
VOL	Output Low Voltage		0.40	V	$l_0 = 1.6 \text{mA}$
P_{D}	Power Dissipation	j j	.75	w	
RPU	Internal Pull-Up	100	1700	μΑ	$V_{IN} = 0V$
Icc	Supply Current	75 (Typ)	150	mA	

AC TIMING CHARACTERISTICS

TA = 0°C to 70°C, V_{SS} = 0V, V_{CC} = +5V \pm .25V

READ ENABLE TIMING — RE such that: R/W = 1, CS = 0.

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
TRE	RE Pulse Width of CS	200			nsec	CL = 50 pf
TDRR	DRQ Reset from RE		25	100	nsec	
TIRR	INTRQ Reset from RE			8000	nsec	
TDV	Data Valid from RE		100	200	nsec	CL = 50 pf
TDOH	Data Hold from RE	50		150	nsec	$C_L = 50 pf$

Note: DRQ and INTRQ reset are from rising edge (lagging) of RE, whereas resets are from falling edge (leading) of WE.

WRITE ENABLE TIMING — WE such that : R/W = 0, CS = 0.

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
TAS	Setup ADDR to CS	50			nsec	
TSET	Setup R/W to CS	0			nsec	
TAH	Hold ADDR from CS	10			nsec	
THLD	Hold R/W from CS	0			nsec	
TWE	WE Pulse Width	200			nsec	
TDRW	DRQ Reset from WE		100	200	nsec	
TIRW	INTRQ Reset from WE			8000	nsec	
TDS	Data Setup to WE	150			nsec	
TDH	Data Hold from WE	0			nsec	

REGISTER TIMINGS

WRITE DATA TIMING

WRITE DATA TIMING:

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
TWG	Write Gate to Write Data		4 2		µsec µsec	FM MFM
TBC	Write Data Cycle Time		4,6,8		μsec	
TWF	Write Gate off from WD		4 2		μsec μsec	FM MFM
TWP	Write Data Pulse Width		820 690 570 1380		nsec nsec nsec nsec	Early MFM Nominal MFM Late MFM FM

INPUT DATA TIMING:

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
TPW	Raw Read Pulse Width	200		3000	nsec	
TBC	Raw Read Cycle Time	3000			nsec	

MISCELLANEOUS TIMING:

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
TCD ₁	Clock Duty (low)	50	67		nsec	(60/40)
TCD ₂	Clock Duty (high)	50	67		nsec	(40/60)
TSTP	Step Pulse Output		4 8		μsec	MFM FM
TDIR	Dir Setup to Step		24 48		μsec	MFM FM
TMR	Master Reset Pulse Width	50			μsec	
TIP	Index Pulse Width	20			μsec	

MISCELLANEOUS TIMING

Package Diagrams

28 LEAD PLASTIC "R" or "PH"

28 LEAD CERDIP "CH"

Information furnished by Western Digital Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Western Digital Corporation for its use; nor for any Infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Western Digital Corporation. Western Digital Corporation reserves the right to change specifications at anytime without notice.

WESTERN DIGITAL

C O R P O R A T / O N

WD9216-00/WD9216-01 Floppy Disk Data Separator — FDDS

FEATURES

- PERFORMS COMPLETE DATA SEPARATION FUNCTION FOR FLOPPY DISK DRIVES
- SEPARATES FM OR MFM ENCODED DATA FROM ANY MAGNETIC MEDIA
- ELIMINATES SEVERAL SSI AND MSI DEVICES NORMALLY USED FOR DATA SEPARATION
- NO CRITICAL ADJUSTMENTS REQUIRED
- COMPATIBLE WITH WESTERN DIGITAL 179X, 176X AND OTHER FLOPPY DISK CONTROLLERS
- SMALL 8-PIN DUAL-IN-LINE PACKAGE
- +5 VOLT ONLY POWER SUPPLY
- TTL COMPATIBLE INPUTS AND OUTPUTS

GENERAL DESCRIPTION

The Floppy Disk Data Separator provides a low cost solution to the problem of converting a single stream of pulses from a floppy disk drive into separate Clock and Data inputs for a Floppy Disk Controller.

The FDDS consists primarily of a clock divider, a long-term timing corrector, a short-term timing corrector, and reclocking circuitry. Supplied in an 8-pin Dual-In-Line package to save board real estate, the FDDS operates on +5 volts only and is TTL compatible on all inputs and outputs.

The WD9216 is available in two versions; the WD9216-00, which is intended for 51/4" disks and the WD9216-01 for 51/4" and 8" disks.

PIN CONFIGURATION

FLOPPY DISK DATA SEPARATOR BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS

MAXIMUM RATINGS*

Operating Temperature Range0°C to +70°	°C
Storage Temperature Range 55°C to 125°	°C
Positive Voltage on any Pin,	
with respect to ground +8.0	٥٧
Negative Voltage on any Pin,	
with respect to ground -0.5	3ν

^{*}Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists it is suggested that a clamp circuit be used.

OPERATING CHARACTERISTICS ($T_A = 0$ °C to 70°C, $V_{CC} = +5V \pm 5$ %, unless otherwise noted)

PARAMETER	MIN.	TYP.	MAX.	UNITS	COMMENTS
D.C. CHARACTERISTICS INPUT VOLTAGE LEVELS					
Low Level V _{IL} High Level V _{IH}	2.0		8.0	V V	
OUTPUT VOLTAGE LEVELS Low Level VOL			0.4	V V	IOL = 1.6mA
High Level VOH INPUT CURRENT	2.4			٧	$IOH = -100\mu A$
Leakage I _{IL} INPUT CAPACITANCE			10	μΑ	0 ≤ AIM < ADD
All Inputs			10	ρF	
POWER SUPPLY CURRENT			50	mA	
A.C. CHARACTERISTICS Symbol					
fCY REFCLK Frequency fCY REFCLK Frequency	0.2 0.2		4.3 8.3	MHz MHz	WD 9216-00 WD 9216-01
tCKH REFCLK High Time	50 50		2500 2500	ns ns	
tSDON REFCLK to SEPD "ON" Delay tSDOFF REFCLK to SEPD "OFF" Delay		100 100		ns ns	
tSPCK REFCLK to SEPCLK Delay tDLL DSKD Active Low Time tDLH DSKD Active High Time	100 0.1 0.2		100 100	ns μs μs	

Figure 3. AC CHARACTERISTICS

DESCRIPTION OF PIN FUNCTIONS

PIN NUMBER	PIN NAME	SYMBOL	FUNCTION			
1	Disk Data	DSKD	Data input signal direct from disk drive. Contains combined clock and data waveform.			
2	Separated Clock	SEPCLK	Clock signal output from the FDDS derived from floppy disk drive serial bit stream.			
3	Reference Clock	REFCLK	Reference clock input.			
4	Ground	GND	Ground			
5,6	Clock Divisor	CD0, CD1	CD0 and CD1 control the internal clock divider circuit. The internal clock is a submultiple of the REFCLK according to the following table: CD1 CD0 Divisor 0 0 1 0 1 2 1 0 4 1 1 8			
7	Separated Data	SEPD	SEPD is the data output of the FDDS			
8	Power Supply	Vcc	+5 volt power supply			

Figure 1.
TYPICAL SYSTEM CONFIGURATION
(51/4 " Drive, Double Density)

OPERATION

A reference clock (REFCLK) of between 2 and 8 MHz is divided by the FDDS to provide an internal clock. The division ratio is selected by inputs CD0 and CD1. The reference clock and division ratio should be chosen per table 1.

The FDDS detects the leading edges of the disk data pulses and adjusts the phase of the internal clock to provide the SEPARATED CLOCK output.

Separate short and long term timing correctors assure accurate clock separation.

The internal clock frequency is nominally 16 times the SEPCLK frequency. Depending on the internal timing correction, the internal clock may be a minimum of 12 times to a maximum of 22 times the SEPCLK frequency.

The reference clock (REFCLK) is divided to provide the internal clock according to pins CD0 and CD1.

TABLE 1: CLOCK DIVIDER SELECTION TABLE

DRIVE (8" or 51/4")	DENSITY (DD or SD)	REFCLK MHz	CD1	CD0	REMARKS
8	DD	8	0	0	Select either one
8	SD	8	0	1	
8	SD	4	0	0	
51/4	DD	8	0	1	Select either one
51/4	DD	4	0	0	
51/4	SD	8	1	0	Select any one
51/4	SD	4	0	1	
51/4	SD	2	0	0	

Figure 2.

See page 725 for ordering information.

Information furnished by Western Digital Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Western Digital Corporation for its use; nor for any intringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Western Digital Corporation. Western Digital Corporation reserves the right to change specifications at anytime without notice.

WESTERN DIGITAL

TR1863/TR1865

Universal Asynchronous Receiver/Transmitter (UART)

FEATURES

- SINGLE POWER SUPPLY +5VDC
- D.C. TO 1 MHZ (64 KB) (STANDARD PART) TR1863/5
- FULL DUPLEX OR HALF DUPLEX OPERATION
- AUTOMATIC INTERNAL SYNCHRONIZATION OF DATA AND CLOCK
- · AUTOMATIC START BIT GENERATION
- EXTERNALLY SELECTABLE Word Length
 - Baud Rate
 Even/Odd Parity (Receiver/Verification —
 - Transmitter/Generation)
 - Parity Inhibit
 - One, One and One-Half, or Two Stop Bit Generation (11/2 at 5 Bit Level)
- AUTOMATIC DATA RECEIVED/TRANSMITTED STATUS GENERATION
- Transmission Complete
- Buffer Register Transfer Complete Received Data Available
- Parity Error
- Framing Error
 Overrun Error
- BUFFERED RECEIVER AND TRANSMITTER REGISTERS

- THREE-STATE OUTPUTS Receiver Register Outputs Status Flags
- TTL COMPATIBLE
- TR1865 HAS PULL-UP RESISTORS ON ALL INPUTS

APPLICATIONS

- PERIPHERALS
- TERMINALS
- MINI COMPUTERS
- FACSIMILE TRANSMISSION
- MODEMS
- CONCENTRATORS
- ASYNCHRONOUS DATA MULTIPLEXERS
- CARD AND TAPE READERS
- PRINTERS
- DATA SETS
- CONTROLLERS
- KEYBOARD ENCODERS
- . REMOTE DATA ACQUISITION SYSTEMS
- ASYNCHRONOUS DATA CASSETTES

TR1863/TR1865 BLOCK DIAGRAM

GENERAL DESCRIPTION

The Universal Asynchronous Receiver/Transmitter (UART) is a general purpose, programmable or hardwired MOS/LSI device. The UART is used to convert parallel data to a serial data format on the transmit side, and converts a serial data format to parallel data on the receive side.

The serial format in order of transmission and reception is a start bit, followed by five to eight data bits, a parity bit (if selected) and one, one and one-half, or two stop bits.

Three types of error conditions are available on each received character: parity error, framing error (no valid stop bit) and overrun error.

The transmitter and receiver operate on external 16X clocks, where 16 clock times are equal to one bit time. The receiver clock is also used to sample in the center of the serial data bits to allow for line distortion.

Both transmitter and receiver are double buffered allowing a one character time maximum between a data read or write Independent handshake lines for receiver and transmitter are also included. All inputs and outputs are TTL compatible with three-state outputs available on the receiver, and error flags for bussing multiple devices

PIN DEFINITIONS

PIN NUMBER	NAME	SYMBOL	FUNCTION
1	POWER SUPPLY	Vcc	+ 5 volts supply
2	NC	NC	No Internal Connection
3	GROUND	Vss	Ground = 0V
4	RECEIVER REGISTER DISCONNECT	RRD	A high level input voltage, V _{IH} , applied to this line disconnects the RECEIVER HOLDING REGISTER outputs from the RR ₁₋₈ data outputs (pins 5-12).
5-12	RECEIVER HOLDING REGISTER DATA	RR ₈ - RR ₁	The parallel contents of the RECEIVER HOLDING REGISTER appear on these lines if a low-level input voltage, V _{IL} , is applied to RRD. For character formats of fewer than eight bits received characters are right-justified with RR1 (pin 12) as the least significant bit and the truncated bits are forced to a low level output voltage, V _{OL} .
13	PARITY ERROR	PE	A high level output voltage, VOH, on this line indicates that the received parity differ from that which is programmed by the EVEN PARITY ENABLE control line (pin 39). This output is updated each time a character is transferred to the RECEIVER HOLDING REGISTER. PE lines from a number of arrays can be bussed together since an output disconnect capability is provided by Status Flag Disconnect line (pin 16).
14	FRAMING ERROR	FE	A high-level output voltage, VOH, on this line indicates that the received character has no valid stop bit, i.e., the bit (if programmed) is not a high level voltage. This output is updated each time a character is transferred to the Receiver Holding Register, FE lines from a number of arrays can be bussed together since an output disconnect capability is provided by the Status Flag Disconnect line (pin 16).

PIN DEFINITIONS

PIN DEFINITION	IN DEFINITIONS					
PIN NUMBER	NAME	SYMBOL	FUNCTION			
15	OVERRUN ERROR	OE	A high-level output voltage, VOH, on this line indicates that the Data Received Flag (pin 19) was not reset before the next character was transferred to the Receiver Holding Register. OE lines from a number of arrays can be bussed together since an output disconnect capability is provided by the Status Flag Disconnect line (pin 16).			
16	STATUS FLAGS DISCONNECT	SFD	A high-level input voltage, VIH, applied to this pin disconnects the PE, FE, OE, DR and THRE allowing them to be buss connected.			
17	RECEIVER REGISTER CLOCK	RRC	The receiver clock frequency is sixteen (16) times the desired receiver shift rate.			
18	DATA RECEIVED RESET	DAR	A low-level input voltage, VIL, applied to this line resets the DR line.			
19	DATA RECEIVED	DR	A high-level output voltage, VOH, indicates that an entire character has been received and transferred to the RECEIVER HOLDING REGISTER.			
20	RECEIVER INPUT	RI	Serial input data A high-level input voltage, V _{IH} , must be present when data is not being received.			
21	MASTER RESET	MR	This line is strobed to a high-level input voltage, VIH, to clear the logic. It resets the TRANS-MITTER and RECEIVER HOLDING REGISTERS, the TRANSMITTER REGISTER, FE, OE, PE, DR and sets TRO, THRE, and TRE to a high-level output voltage, VOH.			
22	TRANSMITTER HOLDING REGISTER EMPTY	THRE	A high-level output voltage, VOH, on this line indicates the TRANSMITTER HOLDING REGISTER has transferred its contents to the TRANSMITTER REGISTER and may be loaded with a new character.			
23	TRANSMITTER HOLDING REGISTER LOAD	THRL	A low-level input voltage, V _{IL} , applied to this line enters a character into the TRANSMITTER HOLDING REGISTER. A transition from a low-level input voltage, V _{IL} , to a high-level input voltage, V _{IH} , transfers the character into the TRANSMITTER REGISTER if it is not in the process of transmitting a character. If a character is being transmitted, the transfer is delayed until its transmission is completed. Upon completion, the new character is automatically transferred simultaneously with the initiation of the serial transmission of the new character.			
24	TRANSMITTER REGISTER EMPTY	TRE	A high-level output voltage, VOH, on this line indicates that the TRANSMITTER REGISTER has completed serial transmission of a full character including STOP bit(s). It remains at this level until the start of transmission of the next character.			

PIN DEFINITIONS

PIN NUMBER	NAME	SYMBOL	FUNCTION
25	TRANSMITTER REGISTER OUTPUT	TRO	The contents of the TRANSMITTER REGISTER (START bit, DATA bits, PARITY bit, and STOF bits) are serially shifted out on this line. Wher no data is being transmitted, this line will remain at a high-level output voltage, VOH. Star of transmission is defined as the transition of the START bit from a high-level output voltage VOH, to a low-level output voltage VOH.
26-33	TRANSMITTER REGISTER DATA INPUTS	TR ₁ ·TR ₈	The character to be transmitted is loaded into the TRANSMITTER HOLDING REGISTER or these lines with the THRL Strobe. If a character of less than 8 bits has been selected (by WLS1 and WLS2), the character is right justified to the least significant bit, TR1, and the excess bits are disregarded. A high-level input voltage, VIH, will cause a high-level output voltage, VOH, to be transmitted.
34	CONTROL REGISTER LOAD	CRL	A high-level input voltage, V _I H, on this line loads the CONTROL REGISTER with the control bits (WLS ₁ , WLS ₂ , EPE, PI, SBS). This line may be strobed or hard wired to a high-level input voltage, VIH.
35	PARITY INHIBIT	PI	A high-level input voltage, VIH, on this line inhibits the parity generation and verification circuits and will clamp the PE output (pin 13) to VOL. If parity is inhibited, the STOP bit(s) will immediately follow the last data bit of transmission.
36	STOP BIT(S) SELECT	SBS	This line selects the number of STOP bits to be transmitted after the parity bit. A high-level input voltage V _{IH} , on this line selects two STOP bits, and a low-level input voltage, V _{IL} , selects a single STOP bit. The TR1863 and TR1865 generate 1½ stop bits when word length is 5 bits and SBS is High V _{IH} .
37-38	WORD LENGTH SELECT	WLS2-WLS1	These two lines select the character length (exclusive of parity) as follows: WLS2 VIL VIL VIH VIH VIH VIH VIH VIL 7 bits
39	EVEN PARITY ENABLE	EPE	VIH VIH 8 bits This line determines whether even or odd PARITY is to be generated by the transmitter and checked by the receiver. A high-level input voltage, VIH, selects even PARITY and a low-level input voltage, VIL, selects odd PARITY.
40	TRANSMITTER REGISTER	TRC	The transmitter clock frequency is sixteen (16) times the desired transmitter shift rate.

DATA INPUT LOAD CYCLE

*RR₁-RR₃, ARE DISCONNECTED AT TRANSITION OF RRD FROM 0 8V TO 2.0V

STATUS FLAG OUTPUT DELAYS

DATA OUTPUT DELAYS

ABSOLUTE MAXIMUM RATINGS

NOTE: These voltages are measured with respect to GND

 Storage Temperature

 Plastic
 -55°C to + 125°C

 Ceramic
 -65°C to + 150°C

 VCC Supply Voltage
 -03V to +7.0V

 Input Voltage at any pin
 -03V to +7.0V

 Operating Free-Air Temperature
 TA Range
 0°C to 70°C

 Lead Temperature (Soldering, 10 sec)
 300°C

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 5V \pm 5\%, V_{SS} = 0V)$

SYMBOL	PARAMETER	TR1863/5		
	OPERATING CURRENT	MIN	MAX	CONDITIONS
Icc	Supply Current		35ma	V _{CC} = 5.25V
VIH	LOGIC LEVELS Logic High	2.4V		
VIL	Logic Low	2.40	0.6V	VCC = 4.75V
VOH	OUTPUT LOGIC LEVELS Logic High	2.4V		VCC = 4.75V, IOH = 100 μa
VOL	Logic Low		0.4V	$V_{CC} = 5.25V, I_{OL} = 1.6 \text{ma}$
loc	Output Leakage (High Impedance State)		± 10μa	VOUT = 0V, VOUT = 5V SFD = RRD = V ₁ H
IIL.	Low Level Input Current	100μa	1.6ma 10µa	VIN = 0.4V TR 1865 only VIN = VIL, TR 1863 only
ΙΗ	High Level Input Current		– 10µa	VIN = VIH, TR 1863 only

SWITCHING CHARACTERISTICS (See "Switching Waveforms")

SYMBOL	PARAMETER	MIN	MAX	CONDITIONS
fclock	Clock Frequency			VCC = 4.75V
	TR1863-00	DC	1.0 MHz	
	TR1863-02	DC	2.5 MHz	
	TR1863-04	DC	3.5 MHz	
	TR1863-06	DC	5.0 MHz	
	TR1865-00	DC	1.0 MHz	with internal pull-ups on all inputs
	TR1865-02	DC	2.5 MHz	with internal pull-ups on all inputs
	TR1865-04	DC	3.5 MHz	with internal pull-ups on all inputs
	TR1865-06	DC	5.0 MHz	with internal pull-ups on all inputs
tpw	Pulse Widths			
	CRL	200 ns		
	THRL	200 ns		
	DRR	200 ns		
	MR	500 ns		
tc	Coincidence Time	200 ns		
thold	Hold Time	20 ns		
tset	Set Time	0		
	OUTPUT PROPAGATION			
	DELAYS			
t _{pd0}	To Low State		250 ns	
tpd1	To High State		250 ns	C _L = 20 pf, plus one TTL load
	CAPACITANCE			
cin	Inputs		20 pf	f = 1 MHz, V _{IN} = 5V
co	Outputs		20 pf	f = 1 MHz, V _{IN} = 5V

Information furnished by Western Digital Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Western Digital Corporation for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Western Digital Corporation. Western Digital Corporation reserves the right to change specifications at anytime without notice.

332 Printed in U.S.A.

Index

Subject	Page	Subject	Page
Address decoding		CRT	
4	3	4	7, 9
4 Gate Array	26	4 Gate Array	21, 28, 36
4P	60		57, 60, 85
4P Gate Array	105	4P Gate Array	103, 105, 130
Baud		Decoding, address	, ,
4	15	4	
4 Gate Array	51	4 Gate Array	28
4P	98	4P	
4P Gate Array	142	4P Gate Array	
Baud rate generator		Disk Drive	
4	15	4 Gate Array	48
4 Gate Array			93
4P		4P Gate Array	
4P Gate Array		Drive select	**********
Buffering		4	17
4 Gate Array	48	4 Gate Array	
4P			
4P Gate Array		4P Gate Array	
CASIN*	170	DRVSEL*	
4	3 17		47
4 Gate Array		4 Coto Arroy	
CASOUT*	54	4 Gate Array	
4	2 16		95
4 Gate Array		4P Gate Array	140
Cassette circuitry	34	FDC Controller	
4	0	4 Gate Array	
		4P	93
4 Gate Array	40	4P Gate Array	138
4	2	I/O bus	
4 Gate Array		4	
4P		4 Gate Array	
4P Gate Array		4P	91
	103	4P Gate Array	
Compensated write data	17	Interrupts	
4		4 Gate Array	48
4 Gate Array		4P	
4P		4P Gate Array	
4P Gate Array	141	Keyboard	
Controller, CRT	_,	4	7
4		4 Gate Array	
4 Gate Array 21		4P	
4P		4P Gate Array	
4P Gate Array 103, 1	05, 130	Memory address decoding	
Controller, Floppy Disk	40		
4 Gate Array		4	
4P	93	4 Gate Array	
4P Gate Array	138	4P	
CPU Board	_	4P Gate Array	105
4	3	MODOUT	
4 Gate Array		4	
4P			82
4P Gate Array	103	4P Gate Array	127
		1	

Index

Subject	Page	Subject	Page
NMI logic		RS-232 Board	
4 Gate Array	48	4 Gate Array	
4P			98
4P Gate Array	140	4P Gate Array	
Oscillator		Sound	
4	3, 5		10
PAL Circuits			44
4	15		
Port Address decoding	4.5		
4		Timing, CPU	
4P Gate Array	1		21
Port bit map	120		57
4	6 16		
4 Gate Array		Video Controller	
4P			, 7
4P Gate Array			21, 28, 36
Precompensation, write			57, 60, 85
4 Gate Array	47		103, 105, 130
4P		Video Monitor	
4P Gate Array	141	4	
Printer status		1	
4			57, 60, 85
4 Gate Array			103, 105, 130
4P		Wait State	47
4P Gate Array	132		
RAM	7 0		
4 Gate Array		WRINTMASKREG*	
4P			
4P Gate Array			
RDINSTATUS*	10 120		83
4	16		
4 Gate Array	48	Write Precompensatio	
4P		4 Gate Array	47
4P Gate Array	128		96
RDNMISTATUS*			
4		WRNMIMASKREG*	
4 Gate Array			
4P			48
4P Gate Array	128	4P	83
Real Time Clock	0	4P Gate Array	
4 Gate Array			
4P			
4P Gate Array			
ROM	101		
4	7		
4 Gate Array			
4P			
4P Gate Array			

SOFTWARE SOFTWARF

Part 2 / Software

1/	Disk Organization
	Single Density Floppy Diskette
	Double Density Floppy Diskette
	5" 5-Meg Hard Disk
	Disk Space Available to the User
	Unit of Allocation
	Ont of Allocations and the second an
2/	Disk Files.
21	Methods of File Allocation
	Dynamic Allocation
	Pre-Allocation
	Record Length
	Record Processing Capabilities
	Record Numbers
3/	TRSDOS File Descriptions
	System Files (/SYS)
	Utility Programs
	Device Driver Programs
	Filter Programs
	Creating a Minimum Configuration Disk
4/	Device Access
	Device Control Block (DCB)
	Memory Header
5/	Drive Access
	Drive Code Table (DCT)
	Disk I/O Table 13
	Directory Records 15
	Granule Allocation Table (GAT)
	Hash Index Table (HIT)
	1000 1000 1117
6/	File Control
٠,	File Control Block (FCB)
	710 0011101 01001 (1 00) 1111111111111111
7/	TRSDOS Version 6 Programming Guidelines
.,	Converting to TRSDOS Version 6.
	Programming With Restart Vectors
	KFLAG\$ (BREAK)((PAUSE), and (ENTER) Interfacing
	Interfacing to @ICNFG
	Interfacing to @KITSK
	Interfacing to the Task Processor
	Interfacing RAM Banks 1 and 2
	Device Driver and FIlter Templates
	@CTL Interfacing to Device Drivers

8/ Using the S	upervisor Calls	45
o, oung me	Calling Procedure	45
	Program Entry and Return Conditions.	
	Supervisor Calls,	
	Numerical List of SVCs	
	Alphabetical List of SVCs	
	Sample Programs.	
9/ Technical I	nformation on TRSDOS Commands and Utilities	189
Appendix A/	TRSDOS Error Messages	193
Appendix B/	Memory Map	199
Appendix C/	Character Codes	201
Appendix D/	Keyboard Code Map	211
Appendix E/	Programmable SVCs	213
Appendix F/	Using SYS 13/SYS	
Index		217

1/Disk Organization

TRSDOS Version 6 can be used with 51/4" single-sided floppy diskettes and with hard disk. Floppy diskettes can be either single-or double-density. See the charts below for the number of sectors per track, number of cylinders, and so on for each type of disk. (Sectors and cylinders are numbered starting with 0.)

Single-Density Floppy Diskette

Bytes per Sector	Sectors per Granule	Sectors per Track*	Granules per Track	Tracks per Cylinder	Cylinders per Drive	Total Bytes
256					*************	256
	5					1,280
		(10)	2			2,560
				1		2,560
					40	102,400
256	5	(10)	2	1	40	102,400
						(100K)**

Double-Density Floppy Diskette

Bytes per Sector	Sectors per Granule	Sectors per Track*	Granules per Track	Tracks per Cylinder	Cylinders per Drive	Total Bytes
256	***********		***************************************		************	256
	6			~~~~~~~	***********	1,536
		(18)	3	********		4,608
				1	**********	4,608
					40	184,320
256	6	(18)	3	1	40	184,320
						(180K)**

^{*}The number of sectors per track is not included in the calculation because it is equal to the number of sectors per granule times the number of granules per track. $(5 \times 2 = 10$ for single density, $6 \times 3 = 18$ for double density, and $16 \times 2 = 32$ for hard disk.)

^{**}Note that this figure is the total amount of space in the given format. Keep in mind that an entire cylinder is used for the directory and at least one granule is used for the bootstrap code. This leaves 96.25K available for use on a single-density data disk and 174K on a double-density data disk.

5" 5-Meg Hard Disk

Note: Because of continual advancements in hard disk technology, the number of tracks and the number of tracks per cylinder may change. Therfore, any information that comes with your hard disk drive(s) supersedes the information in the table below.

Bytes per Sector	Sectors per Granule	Sectors per Track*	Granules per Track	Tracks per Cylinder	Cylinders per Drive	Total Bytes
256						256
	16					4,096
		(32)	2			8,192
		, ,		4		32,768
					153	5,013,504
256	16	(32)	2	4	153	5,013,504
						(4,896K)

^{*}The number of sectors per track is not included in the calculation because it is equal to the number of sectors per granule times the number of granules per track. $(5 \times 2 = 10 \text{ for single density}, 6 \times 3 = 18 \text{ for double density, and } 16 \times 2 = 32 \text{ for hard disk})$

Disk Space Available to the User

One granule on cylinder \emptyset of each disk is reserved for the system. It contains information about where the directory is located on that disk. If the disk contains an operating system, then all of cylinder \emptyset is reserved. This area contains information used to load TRSDOS when you press the reset button.

One complete cylinder is reserved for the directory, the granule allocation table (GAT), and the hash index table (HIT). (On single-sided diskettes, one cylinder is the same as one track.) The number of this cylinder varies, depending on the size and type of disk. Also, if any portion of the cylinder normally used for the directory is flawed, TRSDOS uses another cylinder for the directory. You can find out where the FORMAT utility has placed the directory by using the Free: drive command.

On hard disks, an additional cylinder (cylinder 1) is reserved for use in case your disk drive requires service. This provides an area for the technician to write on the disk without harming any data. (If you bring your hard disk in for service, you should try to back up the contents of the disk first, just to be safe.)

Unit of Allocation

The smallest unit of disk space that the system can allocate to a file is a granule. A granule is made up of a set of sectors that are adjacent to one another on the disk. The number of sectors in a granule depends on the type and size of the disk. See the charts on the previous two pages for some typical sizes.

Methods of File Allocation

TRSDOS provides two ways to allocate disk space for files: dynamic allocation and pre-allocation.

Dynamic Allocation

With dynamic allocation, TRSDOS allocates granules only at the time of write. For example, when a file is first opened for output, no space is allocated. The first allocation of space is done at the first write. Additional space is added as required by further writes.

With dynamically allocated files, unused granules are de-allocated (recovered) when the file is closed.

Unless you execute the CREATE system command, TRSDOS uses dynamic allocation.

Pre-Allocation

With pre-allocation, the file is allocated a specified number of granules when it is created. Pre-allocated files can be created only by the system command CREATE. (See the *Disk System Owner's Manual* for more information on CREATE.)

TRSDOS automatically extends a pre-allocated file as needed. However, it does not de-allocate unused granules when a pre-allocated file is closed. To reduce the size of a pre-allocated file, you must copy it to a dynamically allocated file. The COPY (CLONE = N) system command does this automatically.

Files that have been pre-allocated have a 'C' by their names in a directory listing.

Record Length

TRSDOS transfers data to and from disks one sector at a time. These sectors are 256-byte blocks, and are also called the system's "physical" records.

You deal with records that are 256 bytes in length or smaller, depending on what size record you want to work with. These are known as "logical" records.

You set the size of the logical records in a file when you open the file for the first time. The size is the number of bytes to be kept in each record. There may be from 1 to 256 bytes per logical record.

The operating system automatically accumulates your logical records and stores them in physical records. Since physical records are always 256 bytes in length, there may be one or more logical records stored in each physical record. When the records are read back from disk, the system automatically returns one logical record at a time. These actions are known as "blocking" and "deblocking," or "spanning."

For example, if the logical record length is 200, sectors 1 and 2 look like this:

Since they are completely handled by the operating system, you do not need to concern yourself with physical records, sectors, granules, tracks, and so on. This is to your benefit, as the number of sectors per granule varies from disk to disk. Also, physical record lengths may change in future versions of TRSDOS, but the concept of logical records will not.

Note: All files are fixed-length record files with TRSDOS Version 6.

Record Processing Capabilities

TRSDOS allows both direct and sequential file access.

Direct access (sometimes called "random access") lets you process records in any sequence you specify.

Sequential access allows you to process records in sequence: record n, n+1, n+2, and so on. With sequential access, you do not specify a record number. Instead, TRSDOS accesses the record that follows the last record processed, starting with record \emptyset .

With sequential access files, use the @READ supervisor call to read the next record, and the @WRITE or @VER supervisor call to write the next record. (When the file is first opened, processing starts at record 0. You can use @PEOF to position to the end of file.)

To read or write to a direct access file, use the @POSN supervisor call to position to a specified record. Then use @READ, @WRITE, or @VER as desired. Once @POSN has been used, the End of File (EOF) marker will not move, unless the file is extended by writing past the current EOF position.

Record Numbers

Using direct (random) access, you can access up to 65,536 records. Record numbers start at 0 and go to 65535.

Using a file sequentially, you can access up to 16,777,216 bytes. To calculate the number of records you can access sequentially, use the formula:

16,777,216 ÷ logical record length = number of sequential records allowed

Below are some examples.

```
If the LRL = 256, then: 16,777,216 \div 256 = 65,536 records If the LRL = 128, then: 16,777,216 \div 128 = 131,072 records If the LRL = 50, then: 16,777,216 \div 50 = 335,544 records If the LRL = 1, then: 16,777,216 \div 1 = 16,777,216 records
```

3/TRSDOS File Descriptions

This section describes four types of files found on your TRSDOS master diskette (system files, utilities, driver programs, and filter programs) and explains their functions. It also describes how to construct a minimum system disk for running applications packages.

System Files (/SYS)

TRSDOS Version 6 would occupy considerable memory space if all of it were resident in memory at any one time. To minimize the amount of memory reserved for system use, TRSDOS uses overlays.

Using an overlay-driven system involves some compromise. While a user's application is in progress, different overlays may need to be loaded to perform certain activities requested of the system. This could cause the system to run slightly slower than a system which has more of its file access routines always resident in memory.

The use of overlays also requires that a SYSTEM disk usually be available in Drive 0 (the system drive). Since the disk containing the operating system and its utilities leaves little space available to the user, you may want to remove certain parts of the system software not needed while a particular application is running. You may in fact discover that your day-to-day operations need only a minimal TRSDOS configuration. The greater the number of system functions unnecessary for your application, the more space you can have available for a "working" system disk. Use the PURGE or REMOVE library command to eliminate unneeded system files from the disk.

The following paragraphs describe the functions performed by each system overlay. (In the display produced by the DIR (SYS) library command, the system overlays are identified by the file extension /SYS)

Note: Two system files are put on the disk during formatting. They are DIR/SYS and BOOT/SYS. These files should *never* be copied from one disk to another or REMOVEd. TRSDOS automatically updates any information necessary when performing a backup.

SYSØ/SYS

This is not an overlay. It contains the resident part of the operating system (SYSRES). It is also needed to dynamically allocate file space used when writing files. Any disk used for booting the system *must* contain SYS0. It can be purged from disks not used for booting.

SYS1/SYS

This overlay contains the TRSDOS command interpreter and the routines for processing the @CMNDI, @CMNDR, @FEXT, @FSPEC, and @PARAM system vectors. This overlay must be available on all SYSTEM disks.

SYS2/SYS

This overlay is used for opening or initializing disk files and logical devices. It also contains routines for processing the @CKDRV, @GTDCB, and @RENAM system vectors, and routines for hashing file specifications and passwords. This overlay must be available on all SYSTEM disks.

SYS3/SYS

This overlay contains all of the system routines needed to close files and logical devices. It also contains the routines needed to service the @FNAME system vector. This overlay must not be removed from the disk.

SYS4/SYS

This overlay contains the system error dictionary. It is needed to issue such messages as "File not found," "Directory read error," etc. If you decide to remove this overlay from your working SYSTEM disk, all system errors will produce the error message "SYS ERROR," It is recommended that you not remove this overlay, especially since it occupies only one granule of space.

SYS5/SYS

This is the "ghost" debugger. It is needed if you intend to test out machine language application software by using the TRSDOS DEBUG library command. If your operation will not require this debugging tool, you may purge this overlay.

SYS6/SYS

This overlay contains all of the routines necessary to service the library commands identified as "Library A" by the LIB command. This represents the primary library functions. Only very limited use can be made of TRSDOS if this overlay is removed from your working SYSTEM disk.

SYS7/SYS

This overlay contains all of the routines necessary to service the library commands identified as "Library B" by the LIB command. A great deal of use can be made of TRSDOS even without this overlay. It performs specialized functions that may not be needed in the operation of specific applications. You can purge this overlay if you decide it is not needed on a working SYSTEM disk.

SYS8/SYS

This overlay contains all of the routines necessary to service the library commands identified as "Library C" by the LIB command. A great deal of use can be made of TRSDOS even without this overlay. It performs specialized functions that may not be needed in the operation of specific applications. You can purge this overlay if you decide it is not needed on a working SYSTEM disk.

SYS9/SYS

This overlay contains the routines necessary to service the extended DEBUG commands available after a DEBUG (EXT) is performed. This overlay may be purged if you will not need the extended DEBUG commands while running your application. If you remove SYS5/SYS, then you may as well remove SYS9/SYS, as it would serve no useful purpose.

SYS10/SYS

This system overlay contains the procedures necessary to service the request to remove a file. It should remain on your working SYSTEM disks.

SYS11/SYS

This overlay contains all of the procedures necessary to perform the Job Control Language execution phase. You may remove this overlay from your working disks if you do not intend to execute any JCL functions. If SYS6/SYS (which contains the DO command) has been removed, keeping this overlay would serve no purpose.

SYS12/SYS

This system overlay contains the routines that service the @DODIR, @GTMOD, and @RAMDIR system vectors. It should remain on your disks.

SYS13/SYS

This overlay is reserved for future system use. It contains no code and takes up no space on the disk. You may remove this overlay if you wish to free up its directory slot.

In TRSDOS Version 6.2, this overlay contains the message "No ECI is present at SYS13" if you have not implemented an Extended Command Interpreter (ECI) or an Immediate Execution Program (IEP). You may purge this overlay if you do not intend to use an ECI or an IEP. See Appendix F, Using SYS13, for more information.

Utility Programs

BACKUP — Used to duplicate data from one disk to another.

COMM — A communications package for use with the RS-232C

hardware

CONV — Used to copy files from Model III TRSDOS to TRSDOS Version

6

DOS/HLP — (Version 6.2 only) The data file used with the HELP utility.

FORMAT — Used to put track, sector, and directory information on a disk.

HELP/CMD — (Version 6.2 only) Used to provide on-line information about

the TRSDOS commands

LOG — Used to log in a double-sided diskette in Drive Ø. Also updates

the Drive Code Table information as with the DEVICE library

command.

PATCH — Used to make changes to existing files.

REPAIR — Used to correct certain information on non-TRSDOS format-

ted diskettes.

TAPE100 — A disk/tape, tape/disk utility for cassette tape operations with

the TRS-80 Model 100

Device Driver Programs

COM/DVR — The RS-232C communications driver.

FLOPPY/DCT — Configures floppy drives in the system. Not needed with a

floppy-only system.

JL/DVR — The Joblog driver program.

MEMDISK/DCT — Used to establish a pseudo floppy drive in memory.

Filter Programs

CLICK/FLT — Produces a short tone as each key is pressed.

FORMS/FLT - Used to select printer parameters and perform character

translation.

KSM/FLT — The Keystroke Multiply feature, which allows the assigning

of user-determined phrases to alphabetic keys.

Creating a Minimum Configuration Disk

All files except certain /SYS files may be purged from your Drive Ø disk. Additionally, if you place the needed /SYS files in high memory with the SYSTEM (SYSRES) command, it will be possible to run with a minimum configuration disk in Drive Ø after booting the system. Keep the following points in mind when purging system files:

 \bullet For operation, SYS files 1, 2, 3, 4, 10, and 12 should remain on the Drive 0 disk or be resident in memory.

- SYS2 must be on the system disk if a configuration file is to be loaded.
- SYS11 must be present only if any JCL files will be used.
- All three libraries (SYS files 6, 7, and 8) may be purged if no library command will be used.
- SYS5 and SYS9 may be purged if the system DEBUG package is not needed
- SYSØ may be removed from any disk not used for booting.
- SYS11 (the JCL processor) and SYS6 (containing the DO library command) must both be on the disk if the DO command is to be used. Also, if you remove SYS6, you may as well remove SYS11.
- SYS13 may be removed if you have not implemented an ECI, an IEP file, or if you do not intend to use them.

The presence of any utility, driver, or filter program is dependent upon your individual needs. You can save most of the TRSDOS features in a configuration file using the SYSTEM (SYSGEN) command, so the driver and filter programs will not be needed in run time applications. If you intend to use the HELP utility, your disk must contain the DOS/HLP file.

The owner (update) passwords for TRSDOS files are as follows:

File Type	Extension	Owner Password			
System files	(/SYS) (/FLT)	LSIDOS FILTER			
Filter files Driver files	(/DVŔ)	DRIVER			
Utility files BASIC	(/CMD)	UTILITY BASIC			
BASIC overlays	(/OV\$)	BASIC CCC			
CONFIG/SYS Drive Code Table Initializer	(/DCT)	UTILITY			

Device Control Block (DCB)

The Device Control Block (DCB) is an area of memory that contains information used to interface the operating system with various logical devices. These devices include the keyboard (*KI), the video display (*DO), a printer (*PR), a communications line (*CL), and other devices that you may define.

The following information describes each assigned DCB byte.

DCB+0 (TYPE Byte)

- Bit 7 If set to "1," the Device Control Block is actually a File Control Block (FCB) with the file open. Since DCBs and FCBs are similar, and devices may be routed to files, a "device" with this bit set indicates a routing to a file.
- Bit 6—If set to "1," the device defined by the DCB is filtered or is a device filter.
- Bit 5 If set to "1," the device defined by the DCB is linked.
- Bit 4--- If set to "1," the device defined by the DCB is routed.
- Bit 3 If set to "1," the device defined by the DCB is a NIL device. Any output directed to the device is discarded. For any input request, the character returned is a null (ASCII value 0).
- Bit 2—If set to "1," the device defined by the DCB can handle requests generated by the @CTL supervisor call. See the section on Supervisor Calls for more information.
- Bit 1 If set to "1," the device defined by the DCB can handle output requests which normally come from the @PUT supervisor call.
- Bit 0—If set to "1," the device defined by the DCB can handle requests for input which normally come from the @GET supervisor call.

DCB+1 and DCB+2

Contain the address of the driver routine that supports the hardware assigned to this DCB. (In the case of a routed or linked device, the vector may point to another DCB.)

DCB+3 through DCB+5

Reserved for system use.

DCB+6 and DCB+7

These locations normally contain the two alphabetic characters of the devspec. The system uses the devspec as a reference in searching the device control block tables.

Memory Header

Modules that TRSDOS loads into memory (filters, drivers, and other memory modules such as a SPOOL buffer or the extended DEBUG code) are identified by a standard front-end header:

```
BEGIN:
        ЯL
            START
                          Go to actual code
                          ibesinnins
        DEFW END-1
                          Contains the highest byte
                          iof memory
                          jused by the module
        DEFB 10
                          Length of name, 1-15
                          ;characters;
                          $bits 4-7 reserved for
                          system use
        DEFM 'NAMESTRING' ;UP to 15 alphanumeric
                          icharacters, with the first
                          icharacter A-Z. This should
                          the a unique name to
                          spositively identify the
                          imodule.
MODDCB: DEFW $-$
                          DCB pointing to this
                          imodule (if applicable)
        DEFW Ø
                          Spare system pointer _
                          FRESERVED
        Any additional data storage goes here
START:
       Start of actual program code
END:
       EQU $
```

As explained under the @GTMOD SVC in the "Supervisor Call" section, the location of a specific header can be found provided all modules that are put into memory use this header structure. You can locate the data area for a module by using @GTMOD to find the start of the header and then indexing in to the data area.

Drive Code Table (DCT)

TRSDOS uses a Drive Code Table (DCT) to interface the operating system with specific disk driver routines. Note especially the fields that specify the allocation scheme for a given drive. This data is essential in the allocation and accessibility of file records.

The DCT contains eight 10-byte positions — one for each logical drive designated 0-7. TRSDOS supports a standard configuration of two-floppy drives. You may have up to four floppy drives. This is the default initialization when TRSDOS is loaded

Here is the Drive Code Table layout:

DCT+0

This is the first byte of a 3-byte vector to the disk I/O driver routines. This byte is normally X'C3'. If the drive is disabled or has not been configured (see the SYSTEM command in the *Disk System Owner's Manual*), this byte is a RET instruction (X'C9').

DCT+1 and DCT+2

Contain the entry address of the routines that drive the physical hardware.

DCT + 3

Contains a series of flags for drive specifications

- Bit 7 Set to "1" if the drive is software write protected, "0" if it is not. (See the SYSTEM command in the Disk System Owner's Manual.)
- Bit 6 Set to "1" for DDEN (double density), or "0" for SDEN (single density).
- Bit 5 Set to "1" if the drive is an 8" drive. Set to "0" if it is a 51/4" drive.
- Bit 4—A "1" causes the selection of the disk's second side. The first side is selected if this bit is "0." This bit value matches the side indicator bit in the sector header written by the Floppy Disk Controller (FDC).
- Bit 3—A "1" indicates a hard drive (Winchester). A "0" denotes a floppy drive (51/4" or 8").
- Bit 2—Indicates the time delay between selection of a 51/4" drive and the first poll of the status register. A "1" value indicates 0.5 second and a "0" indicates 1.0 second. See the SYSTEM command in the Disk System Owner's Manual for more details.

If the drive is a hard drive, this bit indicates either a fixed or removable disk: "1" = fixed, "0" = removable.

Bits 1 and 0 — Contain the step rate specification for the Floppy Disk Controller. (See the SYSTEM command in the *Disk System Owner's Manual*.) In the case of a hard drive, this field may indicate the drive address (0-3).

DCT+4

Contains additional drive specifications.

Bit 7— (Version 6.2 only) If "1", no @CKDRV is done when accessing the drive. If an application opens several files on a drive, this bit can be set to speed I/O on that drive after the first successful open is performed. In versions prior to TRSDOS 6.2, this bit is reserved for future use In order to maintain compatibility with future releases of TRSDOS, do not use this bit.

- Bit 6 If "1", the controller is capable of double-density mode.
- Bit 5—"1" indicates that this is a 2-sided floppy diskette; "0" indicates a 1-sided floppy disk. Do not confuse this bit with Bit 4 of DCT+3. This bit shows if the disk is double-sided; Bit 4 of DCT+3 tells the controller what side the current I/O is to be on.

If the hard drive bit (DCT+3, Bit 3) is set, a "1" denotes double the cylinder count stored in DCT+6. (This implies that a logical cylinder is made up of two physical cylinders.)

- Bit 4 If "1," indicates an alien (non-standard) disk controller.
- Bits 0-3 Contain the physical drive address by bit selection (0001, 0010, 0100, and 1000 equal logical Drives 0, 1, 2, and 3, respectively, in a default system). The system supports a translation only where no more than one bit can be set.

If the alien bit (Bit 4) is set, these bits may indicate the starting head number.

DCT +5

Contains the current cylinder position of the drive. It normally stores a copy of the Floppy Disk Controller's track register contents whenever the FDC is selected for access to this drive. It can then be used to reload the track register whenever the FDC is reselected.

If the alien bit (DCT + 4, Bit 4) is set, DCT + 5 may contain the drive select code for the alien controller.

DCT+6

Contains the highest numbered cylinder on the drive. Since cylinders are numbered from zero, a 35-track drive is recorded as X'22', a 40-track drive as X'27', and an 80-track drive as X'4F' If the hard drive bit (DCT+3, Bit 3) is set, the true cylinder count depends on DCT+4, Bit 5. If that bit is a "1," DCT+6 contains only half of the true cylinder count.

DCT+7

Contains allocation information.

- Bits 5-7 Contain the number of heads for a hard drive.
- Bits 0-4 Contain the highest numbered sector relative to zero. A 10sector-per-track drive would show X'00! If DCT+4, Bit 5 indicates 2-sided operation, the sectors per cylinder equals twice this number.

DCT+8

Contains additional allocation information.

- Bits 5-7 Contain the number of granules per track allocated in the formatting process. If DCT + 4, Bit 5 indicates 2-sided operation, the granules per cylinder equals twice this number. For a hard drive, this number is the total granules per cylinder.
- Bits 0-4—Contain the number of sectors per granule that was used in the formatting operation.

DCT+9

Contains the number of the cylinder where the directory is located. For any directory access, the system first attempts to use this value to read the directory. If this operation is unsuccessful, the system examines the BOOT granule (cylinder 0) directory address byte.

Bytes DCT + 6, DCT + 7, and DCT + 8 must relate without conflicts. That is, the highest numbered sector (+1) divided by the number of sectors per granule (+1) must equal the number of granules per track (+1).

Disk I/O Table

TRSDOS interfaces with hardware peripherals by means of software drivers. The drivers are, in general, coupled to the operating system through data parameters stored in the system's many tables. In this way, hardware not currently supported by TRSDOS can easily be supported by generating driver software and updating the system tables.

Disk drive sub-systems (such as controllers for 51/4" drives, 8" drives, and hard disk drives) have many parameters addressed in the Drive Code Table (DCT). Besides those operating parameters, controllers also require various commands (SELECT, SECTOR READ, SECTOR WRITE, and so on) to control the physical devices. TRSDOS has defined command conventions to deal with most commands available on standard Disk Controllers.

The function value (hexadecimal or decimal) you wish to pass to the driver should go in register B. The available functions are:

Hex	Dec	Function	Operation Performed
X,00,	Ø	DCSTAT	Test to see if drive is assigned in DCT
X'01'	1	SELECT	Select a new drive and return status
X'02'	2	DCINIT	Set to cylinder 0, restore, set side 0
X'03'	3	DCRES	Reset the Floppy Disk Controller
X'04'	4	RSTOR	Issue FDC RESTORE command
X'05'	5	STEPI	Issue FDC STEP IN command
X'06'	6	SEEK	Seek a cylinder
X'07'	7	TSTBSY	Test to see if requested drive is busy
X'08'	8	RDHDR	Read sector header information
X,03,	9	RDSEC	Read sector
X'0A'	10	VRSEC	Verify if the sector is readable
X'ØB'	11	RDTRK	Issue an FDC track read command
X,0C,	12	HDFMT	Format the device
X,0D,	13	WRSEC	Write a sector
X,0E,	14	WRSYS	Write a system sector (for example, directory)
X'ØF'	15	WRTRK	Issue an FDC track write command

Function codes X'10' to X'FF' are reserved for future use.

Directory Records (DIREC)

The directory contains information needed to access all files on the disk. The directory records section is limited to a maximum of 32 sectors because of physical limitations in the Hash Index Table. Two additional sectors in the directory cylinder are used by the system for the Granule Allocation Table and Hash Index Table. The directory is contained on one cylinder. Thus, a 10-sector-per-cylinder formatted disk has, at most, eight directory sectors. See the sec-

tion on the Hash Index Table for the formula to calculate the number of directory sectors.

A directory record is 32 bytes in length. Each directory sector contains eight directory records (256/32 = 8). On system disks, the first two directory records of the first eight directory sectors are reserved for system overlays. The total number of files possible on a disk equals the number of directory sectors times eight (since 256/32 = 8). The number available for use is reduced by 16 on system disks to account for those record slots reserved for the operating system. The following table shows the directory record capacity (file capacity) of each format type. The dash suffix (-1 or -2) on the items in the density column represents the number of sides formatted (for example, SDEN-1 means single density, 1-sided).

	Sectors per Cylinder	Directory Sectors	User Files on Data Disk**	User Files on SYS Disk
	Cymidei	0601013	Didit	010 0101
5" SDEN-1	10	8	62	48
5" SDEN-2	20	18	142	128
5" DDEN-1	18	16	126	112
5" DDEN-2	36	32	254	240
8" SDEN-1	16	14	110	96
8" SDEN-2	32	30	238	224
8" DDEN-1	30	28	222	208
8" DDEN-2 Hard Disk*	60	32	254	240

^{*}Hard drive format depends on the drive size and type, as well as the user's division of the physical drive into logical drives. After setting up and formatting the drive, you can use the FREE library command to see the available files.

TRSDOS Version 6 is upward compatible with other TRSDOS 2.3 compatible operating systems in its directory format. The data contained in the directory has been extended. An SVC is included to either display an abbreviated directory or place its data in a user-defined buffer area. For detailed information, see the @DODIR and @RAMDIR SVCs.

The following information describes the contents of each directory field:

DIR+0

Contains all attributes of the designated file.

- Bit 7— If "0," this flag indicates that the directory record is the file's primary directory entry (FPDE). If "1," the directory record is one of the file's extended directory entries (FXDE). Since a directory entry can contain information on up to four extents (see notes on the extent fields, beginning with DIR+22), a file that is fractured into more than four extents requires additional directory records.
- Bit 6 Specifies a SYStem file if "1," a nonsystem file if "0."
- Bit 5 If set to "1," indicates a Partition Data Set (PDS) file.
- Bit 4 Indicates whether the directory record is in use or not. If set to "1," the record is in use. If "0," the directory record is not active, although it may appear to contain directory information. In contrast to some operating systems that zero out the directory record when you remove a file, TRSDOS only resets this bit to zero.
- Bit 3 Specifies the visibility. If "1," the file is INVisible to a directory display or other library function where visibility is a parameter. If a "0," then the file is VISible. (The file can be referenced if specified by name by an @INIT or @OPEN SVC.)

^{**}Note: Two directory records are reserved for BOOT/SYS and DIR/SYS, and are included in the figures for this column.

Bits 0-2—Contain the USER protection level of the file. The 3-bit binary value is one of the following:

 Ø = FULL
 2 = RENAME
 4 = UPDATE
 6 = EXECUTE

 1 = REMOVE
 3 = WRITE
 5 = READ
 7 = NO ACCESS

DIR+1

Contains various file flags and the month field of the packed date of last modification.

- Bit 7—Set to "1" if the file was "CREATEd" (see CREATE library command in the Disk System Owner's Manual). Since the CREATE command can reference a file that is currently existing but non-CREATEd, it can turn a non-CREATEd file into a CREATEd one. You can achieve the same effect by changing this bit to a "1!"
- Bit 6 If set to "1," the file has not been backed up since its last modification. The BACKUP utility is the only TRSDOS facility that resets this flag. It is set during the close operation if the File Control Block (FCB+0, Bit 2) shows a modification of file data.
- Bit 5— If set to "1," indicates a file in an open condition with UPDATE access or greater.
- Bit 4 If the file was modified during a session where the system date was not maintained, this bit is set to "1." This specifies that the packed date of modification (if any) stored in the next three fields is not the actual date the modification occurred. If this bit is "1," the directory command displays plus signs (+) between the date fields.
- Bits 0-3—Contain the binary month of the last modification date. If this field is a zero, DATE was not set when the file was established or since if it was updated.

DIR+2

Contains the remaining date of modification fields.

- Bits 3-7 Contain the binary day of last modification.
- Bits 0-2 Contain the binary year minus 80. For example, 1980 is coded as 000, 1981 as 001, 1982 as 010, and so on.

DIR+3

Contains the end-of-file offset byte. This byte and the ending record number (ERN) form a pointer to the byte position that follows the last byte written. This assumes that programmers, interfacing in machine language, properly maintain the next record number (NRN) offset pointer when the file is closed.

DIR+4

Contains the logical record length (LRL) specified when the file was generated or when it was later changed with a CLONE parameter.

DIR+5 through DIR+12

Contain the name field of the filespec. The filename is left justified and padded with trailing blanks.

DIR + 13 through DIR + 15

Contain the extension field of the filespec. It is left justified and padded with trailing blanks.

DIR + 16 and DIR + 17

Contain the OWNER password hash code.

DIR + 18 and DIR + 19

Contain the USER password hash code. The protection level in DIR \pm 0 is associated with this password.

Software 15

DIR+20 and DIR+21

Contain the ending record number (ERN), which is based on full sectors. If the ERN is zero, it indicates that no writing has taken place (or that the file was not closed properly). If the LRL is not 256, the ERN represents the sector where the EOF occurs. You should use ERN minus 1 to account for a value relative to sector 0 of the file.

DIR+22 and DIR+23

This is the first extent field. Its contents indicate which cylinder stores the first granule of the extent, which relative granule it is, and how many contiguous grans are in use in the extent.

- DIR + 22 Contains the cylinder value for the starting gran of that extent.
- DIR+23, Bits 5-7 Contain the number of the granule in the cylinder indicated by DIR+22 which is the first granule of the file for that extent. This value is relative to zero ("0" denotes the first gran, "1" denotes the second, and so on).
- DIR+23, Bits 0-4 Contain the number of contiguous granules, relative to 0 ("0" denotes one gran, "1" denotes two, and so on). Since the field is five bits, it contains a maximum of X'1F' or 31, which represents 32 contiguous grans.

DIR+24 and DIR+25

Contain the fields for the second extent. The format is identical to that for Extent 1

DIR+26 and DIR+27

Contain the fields for the third extent. The format is identical to that for Extent 1.

DIR + 28 and DIR + 29

Contain the fields for the fourth extent. The format is identical to that for Extent 1.

DIR + 30

This is a flag noting whether or not a link exists to an extended directory record. If no further directory records are linked, the byte contains X'FF.'A value of X'FE' in this byte establishes a link to an extended directory entry. (See "Extended Directory Records" below.)

DIR + 31

This is the link to the extended directory entry noted by the previous byte. The link code is the Directory Entry Code (DEC) of the extended directory record. The DEC is actually the position of the Hash Index Table byte mapped to the directory record. For more information, see the section "Hash Index Table."

Extended Directory Records

Extended directory records (FXDE) have the same format as primary directory records, except that only Bytes 0, 1, and 21-31 are utilized. Within Byte 0, only Bits 4 and 7 are significant. Byte 1 contains the DEC of the directory record of which this is an extension. An extended directory record may point to yet another directory record, so a file may contain an "unlimited" number of extents (limited only by the total number of directory records available).

Granule Allocation Table (GAT)

The Granule Allocation Table (GAT) contains information on the free and assigned space on the disk. The GAT also contains data about the formatting used on the disk.

A disk is divided into cylinders (tracks) and sectors. Each cylinder has a specified number of sectors. A group of sectors is allocated whenever additional space is needed. This group is called a granule. The number of sectors per granule depends on the total number of sectors available on a logical drive. The GAT provides for a maximum of eight granules per cylinder.

In the GAT bytes, each bit set to "1" indicates a corresponding granule in use (or locked out). Each bit reset to "0" indicates a granule free to be used. In a GAT byte, bit 0 corresponds to the first relative granule, bit 1 to the second relative granule, bit 2 the third, and so on. A 5½" single density diskette is formatted at 10 sectors per cylinder, 5 sectors per granule, 2 granules per cylinder. Thus, that configuration uses only bits 0 and 1 of the GAT byte. The remainder of the GAT byte contains all 1's, denoting unavailable granules. Other formatting conventions are as follows:

~	Sectors per Cylinder	Sectors per Granule	Granules per Cylinder	Maximum No. of Cylinders		
5" SDEN	10	5	2	80		
5" DDEN	18	6	3	80		
8" SDEN	16	8	2	77		
8" DDEN	30	10	3	77		
Hard Disk	32	16	Я	153		

*Hard drive format depends on the drive size and type, as well as the user's division of the drive into logical drives. These values assume that one physical hard disk is treated as one logical drive.

The above table is valid for single-sided disks. TRSDOS supports double-sided operation if the hardware interfacing the physical drives to the CPU allows it. A two-headed drive functions as a single logical drive, with the second side as a cylinder-for-cylinder extension of the first side. A bit in the Drive Code Table (DCT+4, Bit 5) indicates one-sided or two-sided drive configuration.

A Winchester-type hard disk can be divided by heads into multiple logical drives. Details are supplied with Radio Shack drives.

The Granule Allocation Table is the first relative sector of the directory cylinder. The following information describes the layout and contents of the GAT.

GAT + X'00' through GAT + X'5F'

Contains the free/assigned table information. GAT + 0 corresponds to cylinder 0, GAT + 1 corresponds to cylinder 1, GAT + 2 corresponds to cylinder 2, and so on. As noted above, bit 0 of each byte corresponds to the first granule on the cylinder, bit 1 to the second granule, and so on. A value of "1" indicates the granule is not available for use

GAT + X'60' through GAT + X'BF'

Contains the available/locked out table information. It corresponds cylinder for cylinder in the same way as the free/assigned table. It is used during mirrorimage backups to determine if the destination diskette has the proper capacity to effect a backup of the source diskette. This table does not exist for hard disks; for this reason, mirror-image backups cannot be performed on hard disk.

GAT + X'C0' through GAT + X'CA'

Used in hard drive configurations; extends the free/assigned table from X'00' through X'CA'. Hard drive capacity up to 203 (0-202) logical or 406 physical cylinders is supported.

GAT + X'CB'

Contains the operating system version that was used in formatting the disk. For example, disks formatted under TRSDOS 6.2 have a value of X'62' contained in this byte. It is used to determine whether or not the disk contains all of the parameters needed for TRSDOS operation

GAT + X'CC'

Contains the number of cylinders in excess of 35. It is used to minimize the time required to compute the highest numbered cylinder formatted on the disk. It is excess 35 to provide compatibility with alien systems not maintaining this byte. If you have a disk that was formatted on an alien system for other than 35 cylinders, this byte can be automatically configured by using the REPAIR utility. (See the section on the REPAIR utility in the Disk System Owner's Manual.)

GAT + X'CD'

Contains data about the formatting of the disk

- Bit 7 If set to "1," the disk is a data disk. If "0," the disk is a system disk.
- Bit 6—If set to "1," indicates double-density formatting. If "0," indicates single-density formatting.
- Bit 5 If set to "1," indicates 2-sided disk. If "0," indicates 1-sided disk.
- Bits 3-4 Reserved.
- Bits 0-2 Contain the number of granules per cylinder minus 1.

GAT + X'CE' and GAT + X'CF'

Contain the 16-bit hash code of the disk master password. The code is stored in standard low-order, high-order format.

GAT + X'D0' through GAT + X'D7'

Contain the disk name. This is the name displayed during a FREE or DIR operation. The disk name is assigned during formatting or during an ATTRIB disk renaming operation. The name is left justified and padded with blanks.

GAT + X'D8' through GAT + X'DF'

Contain the date that the diskette was formatted or the date that it was used as the destination in a mirror image backup operation in the format mm/dd/yy.

GAT + X'E0' through GAT + X'FF'

Reserved for system use.

In Version 6.2:

GAT + X'E0' through GAT + X'F4'

Reserved for system use

GAT + X'F5' through GAT + X'FF'

Contain the Media Data Block (MDB)

GAT + X'F5' through GAT + X'F8' — the identifying header. These four bytes contain a 3 (X'03'), followed by the letters LSI (X'4C',X'53',X'49')

GAT + X'F8' through GAT9 + X'FF' — the last seven bytes of the DCT in use when the media was formatted. FORMAT, MemDISK, and TRSFORM6 install this information See Drive Control Table (DCT) for more information on these bytes

Hash Index Table (HIT)

The Hash Index Table is the key to addressing any file in the directory. It pinpoints the location of a file's directory with a minimum of disk accesses, keeping overhead low and providing rapid file access.

The system's procedure is to construct an 11-byte filename/extension field. The filename is left-justified and padded with blanks. The file extension is then inserted and padded with blanks; it occupies the three least significant bytes of

the 11-byte field. This field is processed through a hashing algorithm which produces a single byte value in the range X'01' through X'FF. (A hash value of X'00' indicates a spare HIT position.)

The system then stores the hash code in the Hash Index Table (HIT) at a position corresponding to the directory record that contains the file's directory. Since more than one 11-byte string can hash to identical codes, the opportunity for "collisions" exists. For this reason, the search algorithm scans the HIT for a matching code entry, reads the directory record corresponding to the matching HIT position, and compares the filename/extension stored in the directory with that provided in the file specification. If both match, the directory has been found. If the two fields do not match, the HIT entry was a collision and the algorithm continues its search from the next HIT entry.

The position of the HIT entry in the hash table is called the Directory Entry Code (DEC) of the file. All files have at least one DEC. Files that are extended beyond four extents have a DEC for each extended directory entry and use more than one filename slot. To maximize the number of file slots available, you should keep your files below five extents where possible.

Each HIT entry is mapped to the directory sectors by the DEC's position in the HIT. Think of the HIT as eight rows of 32-byte fields. Each row is mapped to one of the directory records in a directory sector: The first HIT row is mapped to the first directory record, the second HIT row to the second directory record, and so on. Each column of the HIT field (0-31) is mapped to a directory sector. The first column is mapped to the first directory sector in the directory cylinder (not including the GAT and HIT). Therefore, the first column corresponds to sector 2, the second column to sector 3, and so on. The maximum number of HIT columns used depends on the disk formatting according to the formula: $N=\mbox{number of sectors per cylinder minus two, up to 32.}$

The following chart shows the correlation of the Hash Index Table to the directory records. Each byte value shown represents the position in the HIT. This position value is the DEC. The actual contents of each byte is either a $\chi(00)$ indicating a spare slot, or the 1-byte hash code of the file that occupies the corresponding directory record.

							Columns			****						
Row 1	00	Ø1	02	Ø3	04	05	06	07	Ø8	Ø9	0A	0B	0C	ØD	0E	0F
	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F
Row 2	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F
	30	31	32	33	34	35	36	37	38	39	3A	3B	3C	3D	3E	3F
Row 3	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F
	50	51	52	53	54	55	56	57	58	59	5A	5B	5C	5D	5E	5F
Row 4	60	61	62	63	64	65	66	67	68	69	6A	6B	6C	6D	6E	6F
	70	71	72	73	74	75	76	77	78	79	7A	7B	7C	7D	7E	7F
Row 5	80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F
	90	91	92	93	94	95	96	97	98	99	9A	9B	9C	9D	9E	9F
Row 6	A0	A1	A2	A3	A4	A5	A6	A7	A8	A9	AA	AB	AC	AD	AE	AF
	B0	B1	B2	B3	B4	B5	B6	B7	B8	B9	BA	BB	BC	BD	BE	BF
Row 7	CØ	C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	CB	CC	CD	CE	CF
	DØ	D1	D2	D3	D4	D5	D6	D7	D8	D9	DA	DB	DC	DD	DE	DF
Row 8	EØ	E1	E2	E3	E4	E5	E6	E7	E8	E9	EA	EB	EC	ED	EE	EF
	FØ	F1	F2	F3	F4	F5	F6	F7	F8	F9	FA	FB	FC	FD	FE	FF

A 5% single density disk has 10 sectors per cylinder, two of which are reserved for the GAT and HIT. Since only eight directory sectors are possible, only the first eight positions of each HIT row are used. Other formats use more columns of the HIT, depending on the number of sectors per cylinder in the formatting scheme.

The eight directory records for sector 2 of the directory cylinder correspond to assignments in HIT positions 00, 20, 40, 60, 80, A0, C0, and E0. On system

disks, the following positions are reserved for system overlays. On data disks, these positions (except for 00 and 01) are available to the user.

00 - BOOT/SYS	20 SYS6/SYS
01 — DIR/SYS	21 SYS7/SYS
02 — SYS0/SYS	22 — SYS8/SYS
03 — SYS1/SYS	23 — SYS9/SYS
04 — SYS2/SYS	24 — SYS10/SYS
05 — SYS3/SYS	25 SYS11/SYS
06 — SYS4/SYS	26 — SYS12/SYS
07 SYS5/SYS	27 — SYS13/SYS

These entry positions correspond to the first two rows of each directory sector for the first eight directory sectors. Since the operating system accesses these overlays by position in the HIT rather than by filename, these positions are reserved on system disks.

The design of the Hash Index Table limits the number of files on any one drive to a maximum of 256.

Locating a Directory Record

Because of the coding scheme used on the entries in the HIT table, you can locate a directory record with only a few instructions. The instructions are:

		1FH A,2	(calculates the sector)
and	AND	ØEØH	(calculates the offset in that sector)

For example, if you have a Directory Entry Code (DEC) of X'84', the following occurs when these instructions are performed:

		Value of accumulator A = X'84'
AND	1FH	A=X'04'
ADD	A+2	A = X'06' The record is in the seventh sector of the directory cylinder (0-6)

Using the Directory Entry Code (DEC) again, you can find the offset into the sector that was found using the above instructions by executing one instruction:

		Value of accumulator A = X'84'
AND	0E0H	A = X'80' The directory record is X'80' (128) bytes from the beginning of the sector

If the record containing the sector is loaded on a 256-byte boundary (LSB of the address is X'00') and HL points to the starting address of the sector, then you can use the above value to calculate the actual address of the directory record by executing the instruction:

LD LA

When executed after the calculation of the offset, this causes HL to point to the record. For example:

A = X'80'

LD HL,4200H ;Where sector is loaded LD L,A ;Replace LSB with offset

HL now contains 4280H, which is the address of the directory record you wanted.

If you cannot place the sector on a 256-byte boundary, then you can use the following instructions:

A = X'80'

LD HL , 4256H; Where sector is loaded ;Put offset in E (LSB)

LD D , Ø ;Put a zero in D (MSB) ADD HL , DE ;Add two values together

HL now contains 42D6H, which is the address of the directory record.

Note that the first DEC found with a matching hash code may be the file's extended directory entry (FXDE). Therefore, if you are going to write system code to deal with this directory scheme, you must properly deal with the FPDE/FXDE entries. See Directory Records for more information.

File Control Block (FCB)

The File Control Block (FCB) is a 32-byte memory area. Before the file is opened, this space holds the file's filespec. After an @OPEN or @INIT supervisor call is performed, the system uses this area to interface with the file, and replaces the filespec with other information. When the file is closed, the filespec (without any specified password) is returned to the FCB.

While a file is open, the contents of the FCB are dynamic. As records are written to or read from the disk file, specific fields in the FCB are modified. Avoid changing the contents of the FCB during the time a file is open, unless you are sure that the change will not affect the integrity of the file.

During most system access of the FCB, the IX index register is used to reference each field of data. Register pair DE is used mainly for the initial reference to the FCB address. The information contained in each field of the FCB is as follows:

FCB+0

Contains the TYPE code of the control block.

- Bit 7 If set to "1," indicates that the file is in an open condition; if "0," the file is assumed closed. This bit can be tested to determine the "open" or "closed" status of an FCB.
- Bit 6 Is set to "1" if the file was opened with UPDATE access or higher.
- Bit 5 Indicates a Partition Data Set (PDS) type file.
- Bits 4-3 Reserved for future use.
- Bit 2—Is set to "1" if the system performed any WRITE operation on this file. It is used to update the MOD flag in the directory record when the file is closed.
- Bits 1-0 Reserved for future use.

FCB+1

Contains status flag bits used in read/write operations by the system.

- Bit 7 If set to "1," indicates that I/O operations will be either full sector operations or byte operations of logical record length (LRL) less than 256. If "0," only sector operations will be performed. If you are going to use only full-sector I/O, you can reduce system overhead by specifying the LRL at open time as 0 (indicating 256). An LRL of other than 256 sets bit 7 to "1" on open.
- Bit 6 If set to "1," indicates that the end of file (EOF) is to be set to ending record number (ERN) only if next record number (NRN) exceeds the current value of EOF. This is the case if random access is to be used. During random access, the EOF is not disturbed unless you extend the file beyond the last record slot. Any time the position routine (@POSN) is called, bit 6 is automatically set. If bit 6 is "0," then EOF will be updated on every WRITE operation.
- Bit 5 If "0," then the disk I/O buffer contains the current sector denoted by NRN. If set to "1," then the buffer does not contain the current sector. During byte I/O, bit 5 is set when the last byte of the sector is read. A sector read resets the bit, showing the buffer to be current.

- Bit 4—If set to "1," indicates that the buffer contents have been changed since the buffer was read from the file. It is used by the system to determine whether the buffer must be written back to the file before reading another record. If "0," then the buffer contents were not changed.
- Bit 3 Used to specify that the directory record is to be updated each time the NRN exceeds the EOF. (The normal operation is to update the directory only when an FCB is closed.) Some unattended operations may use this extra measure of file protection. It is specified by adding an exclamation mark ("!") to the end of a filespec when the filespec is requested at open time.
- Bits 2-0 Contain the user (access) protection level as retrieved from the directory of the file. The 3-bit binary value is one of the following:

$$\emptyset$$
 = FULL 2 = RENAME 4 = UPDATE 6 = EXECUTE 1 = REMOVE 3 = WRITE 5 = READ 7 = NO ACCESS

FCB+2

Used by Partition Data Set (PDS) files.

FCB+3 and FCB+4

Contain the buffer address in low-order, high-order format. This is the buffer address specified in register pair HL when the @INIT or @OPEN SVC is performed.

FCB+5

Contains the relative byte offset within the current buffer for the next I/O operation. If this byte has a zero value, then FCB + 1, Bit 5 must be examined to see if the first byte in the current buffer is the target position or if it is the first byte of the next record. If you are performing sector I/O of byte data (that is, maintaining your own buffering), then it is important to maintain this byte when you close the file if the true end of file is not at a sector boundary.

FCB+6

Bits 3-7 - Reserved for system use.

Bits 0-2 — Contain the logical drive number in binary of the drive containing the file. Do not modify this byte; altering this value may damage other files. This byte and FCB+7 are the only links to the file's directory information.

FCB+7

Contains the directory entry code (DEC) for the file. This code is the offset in the Hash Index Table where the hash code for the file appears. Do not modify this byte; altering this value may damage other files. This byte and FCB \pm 6 are the only links to the directory information for the file.

FCB+8

Contains the end-of-file byte offset. This byte is similar to FCB+5 except that it pertains to the end of file rather than to the next record number.

FCB+9

Contains the logical record length that was in effect when the file was opened. This may not be the same LRL that exists in the directory. The directory LRL is generated at the file creation and never changes unless the file is overwritten.

FCB + 10 and FCB + 11

Contain the next record number (NRN), which is a pointer for the next I/O operation. When a file is opened, NRN is zero, indicating a pointer to the beginning. Each sequential sector I/O advances NRN by one.

FCB + 12 and FCB + 13

Contain the ending record number (ERN) of the file. This is a pointer to the sector that contains the end-of-file indicator. In a null file (one with no records), ERN equals 0. If one sector has been written, ERN equals 1.

FCB + 14 and FCB + 15

Contain the same information as the first extent of the directory. This represents the starting cylinder of the file (FCB + 14) and the starting relative granule within the starting cylinder (FCB + 15). FCB + 15 also contains the number of contiguous granules allocated in the extent. These bytes are used as a pointer to the beginning of the file referenced by the FCB.

FCB + 16 through FCB + 19

This 4-byte entry contains granule allocation information for an extent of the file. Relative bytes \emptyset and 1 contain the total number of granules allocated to the file up to but not including the extent referenced by this field. Relative byte 2 contains the starting cylinder of this extent. Relative byte 3 contains the starting relative granule for the extent and the number of contiguous granules.

FCB + 20 through FCB + 23

Contain information similar to the above but for a second extent of the file.

FCB + 24 through FCB + 27

Contain information similar to the above but for a third extent of the file.

FCB + 28 through FCB + 31

Contain information similar to the above but for a fourth extent of the file.

The file control block contains information on only four extents at one time. If the file has more than four extents, additional directory accessing is done to shift the 4-byte entries in order to make space for the new extent information.

Although the system can handle a file of any number of extents, you should keep the number of extents small. The most efficient file is one with a single extent. The number of extents can be reduced by copying the file to a disk that contains a large amount of free space.

7/TRSDOS Version 6 Programming Guidelines

Converting to TRSDOS Version 6

This section provides suggestions on writing programs effectively with TRSDOS Version 6, and on converting programs created with TRSDOS 1.3 and LDOS 5.1 operating systems for use with TRSDOS Version 6. This information is by no means complete, but presents some important concepts to keep in mind when using TRSDOS Version 6.

When programming in assembly language, you can use TRSDOS Version 6 routines for commonly used operations. These are accessed through the supervisor calls (SVCs) instead of absolute call addresses. Nothing in the system can be accessed via any absolute address reference (except Z-80 RST and NMI jump vectors).

IMPORTANT NOTE: TRSDOS provides all functions and storage through supervisor calls. No address or entry point below 3000H is documented or supported by Radio Shack.

The keyboard is not accessible via "peeking," and the video RAM cannot be "poked." The keyboard and video are accessible only through the appropriate SVCs.

Another distinction is that TRSDOS Version 6 handling of logical byte I/O devices (keyboard, video, printer, communications line) completely supports error status feedback. A FLAG convention is uniform throughout these device drivers as well as physical byte I/O associated with files. The device handling in TRSDOS Version 6 is completely independent. That means that byte I/O, both logical and physical, can be routed, filtered, and linked. Therefore, it is important to test status return codes in all applications using byte I/O regardless of the device that the application expects to be used, since re-direction to some other device is possible at the TRSDOS level. Appropriate action must be taken when errors are detected.

Modules loaded into memory and protected by lowering HIGH\$ must include the standard header, as described earlier under "Memory Header." The @GTMOD supervisor call requires that this header be present in every resident module for proper operation.

The file password protection terms of UPDATE and ACCESS have been changed in TRSDOS Version 6 to OWNER and USER, respectively. The additional file protection level of UPDATE has been added. A file with UPDATE protection level can be read or written to, but its end of file cannot be extended. This protection can be useful in a random access fixed-size file or in a file where shared access is to take place.

Files opened with UPDATE or greater access are indicated as open in their directory. Attempting to open the file again forces a change to READ access protection and a "File already open" error code. It is therefore important for applications to CLOSE files that are opened.

For the convenience of applications that access files only for reading, you can inhibit the "file open bit" If you set bit 0 of the system flag SFLAG\$ (see the @FLAG\$ supervisor call), the file open bit is not set in the files directory. Once set, the next @OPEN or @INIT SVC automatically resets bit 0 of SFLAG\$. Note that you cannot use this procedure for files being written to, since it inhibits the CLOSE process.

Some application programs need access to certain system parameters and variables. A number of flags, variables, and port images can be accessed relative to a flag pointer obtained via the @FLAGS supervisor call. These parameters are only accessible relative to this pointer, as the pointer's location may change (See the explanation of the @FLAGS SVC.)

All applications must honor the contents of HIGH\$. This pointer contains the highest RAM address usable by any program. You can retrieve and change HIGH\$ by using the @HIGH\$ SVC.

TRSDOS Version 6 library commands and utilities supply a return code (RC) at completion. The RC is returned in register pair HL. The value returned is either zero (indicating no error), a number from one through 62 (indicating an error as noted in Appendix A, TRSDOS Error Messages), or X'FFFF' (indicating an extended error which is currently not assigned an error number). TRSDOS Version 6 Job Control Language (JCL) aborts on any program terminating with a non-zero RC value. Applications should therefore properly set the return code register pair HL before exiting.

TRSDOS Version 6 library commands are also invokable via the @CMNDR SVC which executes the command. Library commands properly maintain the Stack Pointer (SP) and exit via a RET instruction. In this manner, control is returned to the invoking program with the RC present for testing. For commands invoked with the @CMNDI SVC or prompted for via the @EXIT SVC, the SP is restored to the system stack. The top of the stack will contain an address suitable for simulating an @EXIT SVC; thus, if your application program properly maintains the integrity of the stack pointer, it can exit after setting the RC via a RET instruction instead of an @EXIT SVC.

TRSDOS Version 6 diskette and file structure is identical to that used in LDOS 51. This includes formatting, directory structure, and data address mark conventions TRSDOS Version 6 system diskettes, however, use the entire BOOT track (track 0). This compatibility means that data files may be used interchangeably between LDOS 5.1 equipped machines and TRSDOS Version 6 equipped machines; the diskettes themselves are readable and writable across both operating systems.

The methods of internal handling of device linking and filtering have been changed from LDOS 5.1. (It is beyond the scope of this manual to explain the internal functioning of TRSDOS Version 6.) Device filters must adhere to a strict protocol of linkage in order to function properly. See the section on "Device Driver and Filter Templates" for information on device driver and filter protocol.

Stack Handling Restrictions*

Interrupt tasks and filters that deal with the keyboard or video must not place the stack pointer above XF3FF. This is because any operation that requires the keyboard or video RAM switches in the 3K bank at XF400′ and suppresses the stack until it is switched out again. If the system accesses the stack at any time during this period, the integrity of the stack is destroyed.

Programming With Restart Vectors

The Restart instruction (RST) provides the assembly language programmer with the ability to call a subroutine with a one-byte call. If a routine is called many times by a program, the amount of space that is saved by using the RST instruction (instead of a three-byte CALL) can be significant.

In TRSDOS a RST instruction is also used to interface to the operating system. The system uses RST 28H for supervisor calls. RSTS 00H, 30H, and 38H are for the system's internal use.

RSTs 08H, 10H, 18H, and 20H are available for your use. Caution: Some programs, such as BASIC, may use some of these RSTs.

Each RST instruction calls the address given in the operand field of the instruction. For example, RST 18H causes the system to push the current program counter address onto the stack and then set the program counter to address 0018H. RST 20H causes a jump to location 0020H, and so on.

Each RST has three bytes reserved for the subroutine to use. If the subroutine will not fit in three bytes, then you should code a jump instruction (JP) to where the subroutine is located. At the end of the subroutine, code a return instruction (RET). Control is then transferred to the instruction that follows the RST.

For example, suppose you want to use RST 18H to call a subroutine named "ROUTINE." The following routine loads the restart vector with a jump instruction and saves the old contents of the restart vector for later use.

SETRST:	LD	IX,0018H	Restart area address
	LD	IY, RDATA	¡Data area address
	LD	B +3	Number of bytes to move
LOOP:	LD	A,(IX)	iRead a byte from
			restart area
	LD	C,(IY)	iRead a byte from data
			iarea
	LD	(IX) C	Store this byte in
			restart area
	LD	(IY),A	Store this byte in data
			;area
	INC	IX	Increment restart area
			ipointer
	INC	ΙY	¡Increment data area
			ipointer
	DJNZ	LOOP	Loop till 3 bytes moved
	RET		Return when done
RDATA:	DEFB	ØC3H	Jump instruction (JP)
	DEFW	ROUTINE	Operand (name of
			;subroutine)

Before exiting the program, calling the above routine again puts the original contents of the restart vector back in place.

KFLAG\$ (BREAK), (PAUSE), and (ENTER) Interfacing

KFLAG\$ contains three bits associated with the keyboard functions of BREAK, PAUSE (GHIFT) (@), and ENTER. A task processor interrupt routine (called the KFLAG\$ scanner) examines the physical keyboard and sets the appropriate KFLAG\$ bit if any of the conditions are observed. Similarly, the RS-232C driver routine also sets the KFLAG\$ bits if it detects the matching conditions being received.

Many applications need to detect a PAUSE or BREAK while they are running. BASIC checks for these conditions after each logical statement is executed (that is, at the end of a line or at a ":"). That is how, in BASIC, you can stop a program with the (BREAK) key or pause a listing.

One method of detecting the condition in previous TRSDOS operating systems was to issue the @KBD supervisor call to check for BREAK or PAUSE (SHIFT) (

Another method was to scan the keyboard, physically examining the keyboard matrix. An undesirable side effect of this method was that type-ahead stored up the keyboard depression for some future unexpected input request. Examining the keyboard directly also inhibits remote terminals from passing the BREAK or PAUSE condition.

In TRSDOS Version 6, the KFLAG\$ scanner examines the keyboard for the BREAK, PAUSE, and ENTER functions. If any of these conditions are detected, appropriate bits in the KFLAG\$ are set (bits 0, 1, and 2 respectively).

Note that the KFLAG\$ scanner only sets the bits. It does not reset them because the "events" would occur too fast for your program to detect. Think of the KFLAG\$ bits as a latch. Once a condition is detected (latched), it remains latched until something examines the latch and resets it—a function to be performed by your KFLAG\$ detection routine.

Under Version 6.2, you can use the @CKBRKC SVC, SVC 106, to see if the BREAK key has been pressed. If a BREAK condition exists, @CKBRKC resets the break bit of KFLAG\$.

For illustration, the following example routine uses the BREAK and PAUSE conditions:

```
KEL AGS
@FLAGS
        EQU
               101
@KBD
        EQU
               8
OKEY
        EQU
               1
        EQU
@PAUSE
               16
CKPAWS
        LD
               A,@FLAGS
                              Get Flags pointer
                              into register IY
         RST
               28H
        LD
               A, (IY+KFLAG$) iGet the KFLAG$
        RRCA
                              Bit 0 to carry
         JP
               C,GOTBRK
                              iGo on BREAK
         RRCA
                              Bit 1 to carry
        RET
               MC
                              Return if no pause
         CALL
               RESKFL
                              Reset the flas
         PUSH
               DF
FLUSH
         LD
               A .@KBD
                              Flush type-ahead
         RST
                              ibuffer while
               28H
               Z,FLUSH
                              iignoring errors
         .IR
         POP
PROMPT
         PUSH
               DE
               A . @KEY
         LD
                              Wait on Key entry
         RST
               28H
         POP
               DF
         CP
               80H
                              Abort on (BREAK)
         JP
               Z,GOTBRK
         CP
                              ; I snore PAUSE;
               GØH
                              ielse . . .
         JR
               Z, PROMPT
RESKFL
         PUSH
                               ireset KFLAG$
               HL.
         PUSH
               AF
               A,@FLAGS
                              iGet flags pointer
         LD
         RST
               28H
                              Finto register IY
RESKFL1 LD
               A,(IY+KFLAG$) ;Get the flas
         AND
               ØF8H
                              Strip ENTER,
```

```
LD
      (IY+KFLAG$),A ;PAUSE, BREAK
PUSH
      BC
LD
      B , 16
      A .@PAUSE
LD
                     ¡Pause a while
RST
      28H
POP
      A+(IY+KFLAG$) ; Check if finger is
LD
AND
      3
                     istill on key
JR
      NZ , RESKFL1
                     Reset it again
POP
      AF
                     Restore resisters
POP
      HL
                     and exit
RET
```

The best way to explain this KFLAG\$ detection routine is to take it apart and discuss each subroutine. The first piece reads the KFLAG\$ contents:

```
KFLAG$
        EQU
CKPAWS
        LD
              A,@FLAGS
                            Get Flags pointer
        RST
              28H
                            into register IY
              A,(IY+KFLAG$) ;Get the KFLAG$
        ΙD
        RRCA
                            Bit Ø to carry
        JP
              C,GOTBRK
                            Go on BREAK
        RRCA
                            Bit 1 to carry
        RET
              NC
                            Return if no pause
```

The @FLAGS SVC obtains the flags pointer from TRSDOS. Note that if your application uses the IY index register, you should save and restore it within the CKPAWS routine. (Alternatively, you could use @FLAGS to calculate the location of KFLAG\$, use register HL instead of IY, and place the address into the LD instructions of CKPAWS at the beginning of your application.)

The first rotate instruction places the BREAK bit into the carry flag. Thus, if a BREAK condition is in effect, the subroutine branches to "GOTBRK," which is your BREAK handling routine.

If there is no BREAK condition, the second rotate places what was originally in the PAUSE bit into the carry flag. If no PAUSE condition is in effect, the routine returns to the caller.

This sequence of code gives a higher priority to BREAK (that is, if both BREAK and PAUSE conditions are pending, the BREAK condition has precedence). Note that the GOTBRK routine needs to clear the KFLAG\$ bits after it services the BREAK condition. This is easily done via a call to RESKFL.

The next part of the routine is executed on a PAUSE condition:

	CALL	RESKFL	Reset the flag
	PUSH	DE	
FLUSH	LD	A .@KBD	Flush type-ahead
	RST	28H	ibuffer while
	JR	Z,FLUSH	ignoring errors
	POP	DE	

First the KFLAG\$ bits are reset via the call to RESKFL. Next, the routine takes care of the possibility that type-ahead is active. If it is, the PAUSE key was probably detected by the type-ahead routine and so is stacked in the type-ahead buffer also. To flush out (remove all stored characters from) the type-ahead buffer, @KBD is called until no characters remain (an NZ is returned).

Now that a PAUSEd state exists and the type-ahead buffer is cleared, the routine waits for a key input:

```
PROMPT PUSH DE
LD A,@KEY ;Wait on Key entry
RST 28H
POP DE
CP 8ØH ;Abort on @REAK)
JP Z,GOTBRK
```

```
CP GØH ;Isnore PAUSE;
JR Z,PROMPT ;else...
```

The PROMPT routine accepts a BREAK and branches to your BREAK handling routine. It ignores repeated PAUSE (the 60H). Any other character causes it to fall through to the following routine which clears the KFLAG\$:

```
PUSH HL
                              reset KFLAG$
RESKFL
        PUSH AF
        LD
               A,@FLAGS
                              Get flags pointer
                              Finto register IY
         RST
               28H
               A, (IY+KFLAG$) ; Get the flag
RESKFL1
        LD
               ØF8H
                              Strip ENTER,
         AND
               (IY+KFLAG$), A $PAUSE, BREAK
         I D
         PUSH
               BC.
         LD
               B,16
               A,@PAUSE
                              ¡Pause a while
         LD
         RST
               28H
         POP
               A, (IY+KFLAG$) ; Check if finger is
         LD
                              istill on Key
         AND
               NZ , RESKFL1
                              Reset it again
         .112
                              Restore registers
         POP
               ΑF
                              tand exit
         POP
         RET
```

The RESKFL subroutine should be called when you first enter your application. This is necessary to clear the flag bits that were probably in a "set" condition. This "primes" the detection. The routine should also be called once a BREAK, PAUSE, or ENTER condition is detected and handled. (You need to deal with the flag bits for only the conditions you are using.)

Interfacing to @ICNFG

With the TRSDOS library command SYSGEN, many users may wish to SYSGEN the RS-232C driver. Before doing that, the RS-232C hardware (UART, Baud Rate Generator, etc.) must be initialized. Simply using the SYSGEN command with the RS-232C driver resident is not enough; some initialization routine is necessary. The @ICNFG (Initialization CoNFiGuration) vector is included in TRSDOS to provide a way to invoke a routine to initialize the RS-232C driver when the system is booted. It also provides a way to initialize the hard disk controller at power-up (required by the Radio Shack hard disk system).

The final stages of the booting process loads the configuration file CONFIG/SYS if it exists. After the configuration file is loaded, an initialization subroutine CALLs the @ICNFG vector. Thus, any initialization routine that is part of a memory configuration can be invoked by chaining into @ICNFG.

If you need to configure your own routine that requires initialization at power-up, you can chain into @ICNFG. The following procedure illustrates this link. The first thing to do is to move the contents of the @ICNFG vector into your initialization routine:

```
LD
      A,@FLAGS
                    Get flags pointer
RST
      28H
                    finto register IY
      A (IY+28)
                    Get opcode
I D
      (LINK),A
LD
                     Get address LOW
LD
      L,(IY+29)
                     Get address HIGH
      H,(IY+30)
LD
LD
      (LINK+1),HL
```

This subroutine does this by transferring the 3-byte vector to your routine. You then need to relocate your routine to its execution memory address. Once this

is done, transfer the relocated initialization entry point to the @ICNFG vector as a jump instruction:

If you need to invoke the initialization routine at this point, then you can use:

```
CALL ROUTINE ; Invoke your routine
```

Your initialization routine would be unique to the function it was to perform, but an overall design would look like this:

```
INIT CALL ROUTINE Start of init LINK DEFS 3 Continue on Your initialization routine
```

After linking in your routine, perform the SYSGEN. If you have followed these procedures, your routine will be invoked every time you start up TRSDOS.

Interfacing to @KITSK

Background tasks can be invoked in one of two ways. For tasks that do not require disk I/O, you can use the RTC (Real Time Clock) interrupt and one of the 12 task slots (or other external interrupt). For tasks that require disk I/O, you can use the keyboard task process.

At the beginning of the TRSDOS keyboard driver is a call to @KITSK. This means that any time that @KBD is called, the @KITSK vector is also called. (The type-ahead task, however, bypasses this entry so that @KITSK is not called from the type-ahead routine.) Therefore, if you want to interface a background routine that does disk I/O, you must chain into @KITSK.

The interfacing procedure to @KITSK is identical to that shown in the section "Interfacing to @ICNFG," except that IY+31 through IY+33 is used to reference the @KITSK vector. You may want to start your background routine with:

```
START CALL ROUTINE ;Invoke task
LINK DEFS 3 ;For @KITSK hook
ROUTINE EQU $ ;Start of the task
```

Be aware of one major pitfall. The @KBD routine is invoked from @CMNDI and @CMNDR (which is in SYS1/SYS). This invocation is from the @KEYIN call, which fetches the next command line after issuing the "TRSDOS Ready" message. If your background task executes and opens or closes a file (or does anything to cause the execution of a system overlay other than SYS1), then SYS1 is overwritten by SYS2 or SYS3. When your routine finishes, the @KEYIN handler tries to return to what called it.—SYS1, which is no longer resident. Therefore, any task chained to @KITSK which causes a resident SYS1 to be overwritten must reload SYS1 before returning.

You can use the following code to reload SYS1 if SYS1 was resident prior to your task's execution:

```
ROUTINE LD A,@FLAGS ;Get flass pointer RST 28H ;into resister IY LD A,(IY-1) ;Get resident over-AND 8FH ;lay and remove LD (OLDSYS+1),A ;the entry code
```

```
rest of your task
```

```
EXIT
        EQU
OLDSYS
        LD
              A . Ø
                            iGet old overlay #
        CP
              83H
                            ¡Was it SYS1?
        RET
                            Return if not; else
              NZ
                            Get SYS1 per res. A
        RST
              28H
                            (no RET needed)
```

Interfacing to the Task Processor

This section explains how to integrate interrupt tasks into your applications.

One of the hardware interrupts in the TRS-80 is the real time clock (RTC). The RTC is synchronized to the AC line frequency and pulses at 60 pulses per second, or once every 16.67 milliseconds. (Computers operating with 50 Hz AC use a 50 pulses per second RTC interrupt. In this case, all time relationships discussed in this section should be adjusted to the 50 Hz base.)

A software task processor manages the RTC interrupt in performing background tasks necessary to specific functions of TRSDOS (such as the time clock, blinking cursor, and so on). The task processor allows up to 12 individual tasks to be performed on a "time-sharing" basis.

These tasks are assigned to "task slots" numbered from 0 to 11. Slots 0-7 are considered "low priority" tasks (executing every 266.67 milliseconds). Slots 8-10 are medium priority tasks (executing every 33.33 milliseconds). Slot 11 is a high priority task (executing every 16.66 milliseconds SYSTEM (FAST) or 33.33 milliseconds SYSTEM (SLOW)). Task slots 3, 7, 9, and 10 are reserved by the system for the ALIVE, TRACE, SPOOL, and TYPE-AHEAD functions, respectively.

TRSDOS maintains a Task Control Block Vector Table (TCBVT) which contains 12 vectors, one for each of the 12 task slots. TRSDOS contains five supervisor calls that manage the task vectors. The five SVCs and their functions are:

@CKTSK	Checks to see whether a task slot is unused or active
@ADTSK	Adds a task to the TCBVT
@RMTSK	Removes a task from the TCBVT
@KLTSK	Removes the currently executing task
@RPTSK	Replaces the TCB address for the current task

The TRSDOS Task Control Block Vector Table contains vector pointers. Each TCBVT vector points to an address in memory, which in turn contains the address of the task. Thus, the tasks themselves are indirectly addressed.

When you are programming a task to be called by the task processor, the entry point of the routine needs to be stored in memory. If you make this storage location the beginning of a Task Control Block (TCB), the reason for indirect vectoring of interrupt tasks will become more clear Consider an example TCB:

```
MYTCB DEFW MYTASK
COUNTER DEFB 15
TEMPY DEFS 1
MYTASK RET
```

This is a useless task, since the only thing it does is return from the interrupt. However, note that a TCB location has been defined as "MYTCB" and that this location contains the address of the task. A few more data bytes immediately following the task address storage have also been defined.

Upon entry to a service routine, index register IX contains the address of the TCB. You can therefore address any TCB data using index instructions. For example, you could use the instruction "DEC (IX+2)" to decrement the value contained in COUNTER in the above routine.

Here is the routine expanded slightly:

```
MYTCB DEFW MYTASK
COUNTER DEFB 15
TEMPY DEFB 0
MYTASK DEC (IX+2)
RET NZ
LD (IX+2),15
RET
```

This version makes use of the counter. Each time the task executes, the counter is decremented. When the count reaches zero, the counter is restored to its original value.

In order to be executed, all tasks must be added to the TCBVT. The @ADTSK supervisor call does this. For the above routine, assume the task slot chosen is low-priority slot 2. You can ascertain that slot 2 is available for use by using the @CKTSK SVC as follows:

```
LD C.2 ;Reference slot 2

LD A.28 ;Set for @CKTSK SVC

RST 28H ;An "NZ" indication

JP NZ.INUSE ;says that the slot is

ibeing used.
```

Once you determine that the slot is available (that is, not being used by some other task), you can add your task routine. The following code adds this task to the TCBVT:

LD	DE,MYTCB	Point to the TCB
LD	C + 2	Reference slot 2
LD	A +29	Set for @ADTSK SVC
RST	28H	Issue the SUC

The above program lines point register DE to the TCB, load the task slot number into register C, and then issue the @ADTSK supervisor call. If you want this task to run regardless of what is in memory, you can place it in high memory (of bank 0) and protect it by moving HIGH\$ below it via the @HIGH\$ supervisor call.

Once a task has been activated, it is sometimes necessary to deactivate it. You can do this in two ways. The most common way is to use the @RMTSK supervisor call:

You identify the task slot to remove by placing a value in register C, and then you issue the supervisor call.

You can use another method if you want to remove the task while it is being executed. Examine the routine modified as follows:

```
DEFW
MYTCB
              MYTASK
COUNTER DEFB
               10
TEMPY
         DEFB
               Ø
MYTASK
         DEC
               (IX+2)
         RET
               NZ
         LD
               A +32
                              Set for @KLTSK SVC
        RST
               28H
                              Issue the SVC
```

The @KLTSK supervisor call removes the currently executing task from the TCBVT. The system does not return to your routine, but continues as if you had executed a RET instruction. For this reason, the @KLTSK SVC should be the last instruction you want executed. In this example, MYTASK decrements the counter by one on each entry to the task. When the counter reaches zero, the task is removed from slot 2.

The last task processor supervisor call is @RPTSK. The @RPTSK function updates the TCB storage vector (the vector address in your Task Control Block) to be the address immediately following the @RPTSK SVC instruction. As with @KLTSK, the system does not return to your service routine after the SVC is made, but continues on with the task processor. The following example illustrates how @RPTSK can be used in a program:

@ADTSK @RPTSK @RMTSK @EXIT @VDCTL BEGIN	ORG EQU EQU EQU EQU EQU LD	9000H 29 31 30 22 15 DE,TCB	;Point to TCB
	LD LD RST LD	C,Ø A,@ADTSK 28H A,@EXIT	;and add the task ;to slot Ø ;Exit to TRSDOS
TCB COUNTER	RST DEFW DEFB	28H TASK 15	
TASKA	LD RST	A @RPTSK 28H	Replace current
TASK	LD LD LD RST	BC,027CH HL,004FH A,@VDCTL 28H	;Put a character ;at Row Ø, Col. 79
	DEC RET LD LD RST	(IX+2) NZ (IX+2),15 A,@RPTSK 28H	Decrement the counter and return if not expired; else reset Replace the previous task with TASKB
TASKB	LD LD RST DEC RET LD JR END	BC,022DH HL,004FH A,@VDCTL 28H (IX+2) NZ (IX+2),15 TASKA BEGIN	¡Put a character ;at Row Ø, Col. 79

This task routine contains no method of relocating it to protected RAM. The statements starting at the label BEGIN add the task to TCBVT slot 0 and return to TRSDOS Ready. The task contains a four-second down counter and a routine to put a character in video RAM (80th character of Row 0). At four-second intervals, the character toggles between '|| and '-'. This is done by using the @RPTSK SVC to toggle the execution of two separate routines which perform the character display.

TRSDOS uses bank-switched memory. In order to properly control and manage this additional memory, certain restrictions are placed on tasks. All tasks must be placed either in low memory (addresses X'0000' through X'7FFF') or in bank zero of high memory (addresses X'8000' through X'FFFF'). The task processor always enables bank zero when performing background tasks. The assembly language programmer must ensure that tasks are placed in the correct memory area.

Interfacing RAM Banks 1 and 2

The proper use of the RAM bank transfer techniques described here requires a high degree of skill in assembly language programming. This section on bank switching is intended for the professional.

The TRS-80 Model 4 can optionally support a second set of 64K RAM, bringing the total RAM to 128K TRSDOS designates this extra 64K RAM as two banks of 32K RAM each, which are banks 1 and 2 of bank-switched RAM. The upper 32K of standard RAM is designated bank 0. At any one time, only one of the banks is resident. The resident bank is always addressed at X'8000' through X'FFFF. When a bank transfer is performed, the specified bank becomes addressable and the previous bank is no longer available. Since memory refresh is performed on all banks at all times, nothing in the previously resident bank is altered during whatever time it is not addressable (that is, not resident).

You can access this additional RAM by means of the @BANK supervisor call (SVC 102). When you power up your computer or press reset, TRSDOS looks to see which banks of RAM are installed in your machine. TRSDOS maintains a bit map in one byte of storage, with each bit representing one of the banks of RAM. This byte is called "Bank Available RAM" (BAR), and its information is set when you boot TRSDOS. Bit 0 corresponds to bank 0, bit 1 corresponds to bank 1, and so on up to bit 7. From a hardware standpoint, the Model 4 has a maximum of three banks. You have either bank 0 only (a 64K machine), or banks 0-2 (a 128K machine).

Another bit map is used to indicate whether a bank is reserved or available for use. This byte is called the "Bank Used RAM" (BUR). Again, bit 0 corresponds to bank 0, bit 1 to bank 1, and so on TRSDOS design supports the use of banks 1 and 2 primarily for data storage (for example, a spool buffer, Memdisk, etc.). The management of any memory space within a particular bank of RAM (excluding bank 0) is the responsibility of the application program "reserving" a particular bank.

TRSDOS requires that any device driver or filter that is relocated to high memory (X'8000' through X'FFFF') reside in bank 0. The TRSDOS device handler always invokes bank 0 upon execution of any byte I/O service request (@PUT, @GET, @CTL, as well as other byte I/O SVCs that use @PUT/@GET/@CTL). This ensures that any filter or driver attached to the device in question will be available. If a RAM bank other than 0 was resident, it is restored upon return from the device handler. This ensures that device I/O is never impacted by bank switching.

TRSDOS also requires that all interrupt tasks reside in bank 0 or low memory (X'0000' through X'7FFF'). The interrupt task processor always enables bank 0 and restores whatever bank was previously resident. An interrupt task may perform a bank transfer from 0 to another bank provided the necessary linkage and stack area is used. This is discussed in more detail later.

All bank transfer requests must be performed using the @BANK SVC. This SVC provides four functions, three of which are interrogatory and one of which performs the actual bank switching

As mentioned previously, the contents of banks other than 0 are managed by the application, not by TRSDOS. Therefore, the application needs a way of finding out if any given bank is available. For example, if an application wants to reserve use of bank 1, it must first check to see if bank 1 is free to use. This is done by using function 2 as follows:

```
LD C,1 ;Specify bank 1
LD B,2 ;Check BUR if bank in use
LD A,@BANK ;Set @BANK SVC (102)
RST 28H
JR NZ,INUSE ;NZ if bank already in use
```

Note that the return condition (NZ or Z) shows whether or not you can use the specified bank (it may not even be installed).

If the specified bank is available, you then need to reserve it. Do this by using function 3 as follows:

```
LD C:1 ;Specify bank 1
LD B:3 ;Set BUR to show "in use"
```

```
LD A,@BANK ;Set @BANK SVC (102)
RST 28H
JR NZ,ERROR
```

You must check for an error by examining the Z flag. In general (discounting a system error), an NZ condition returned means that the specified bank is already in use. If you had performed a function 2 (testing to see if the bank savailable) and got a not-in-use indication, but got an NZ condition on function 3, then the @BANK SVC routine has been altered and is probably unusable

When an application no longer requires a memory bank, it can return the bank to a "free" state by using function 1 as follows:

No error condition is checked, as none is returned by TRSDOS. If you should mistakenly use function 1 with a bank that is nonexistent, an error is returned if you try to invoke the nonexistent bank.

To find out which bank is resident at any time, use function 4 as follows:

LD	B,4	Which bank is	resident?
LD	A . @BANK	Set @BANK SVC	(102)
DOT	28H		

The current bank number is returned in register A.

To exchange the current bank with the specified bank, use function 0. Since a memory transfer takes place in the address range X'8000' through X'FFFF, the transfer cannot proceed correctly if the stack pointer (SP) contains a value that places the stack in that range. @BANK inhibits function 0 and returns an SVC error if the stack pointer violates this condition.

A bank can be used purely as a data storage buffer. The application's routines for invoking and indexing the bank switching probably reside in the user range X'3000' through X'7FFF'. As an example, the following code invokes a previously tested and reserved bank (via functions 2 and 3), accesses the buffer, and then restores the previous bank:

```
LD
       C , 1
                   Specify bank 1
       B , Ø
                    Bring up bank
LD
                    LD
       A . @BANK
RST
       28H
       NZ, ERROR
                    Error trap
. IR
                    ¡Save old bank data
PUSH
your code to access the buffer region
                    Recover old bank data
POP
       ВC
                    ;Set @BANK SVC (102)
LD
       A . @BANK
RST
       28H
       NZ, ERROR
                    Error trap
JR
```

Note that the @BANK function 0 conveniently returns a zero in register B to effect a function 0 later, as well as provides the old bank number in register C. This means that you only have to save register pair BC, pop it when you want to restore the previous bank, and then issue the @BANK SVC.

Suppose you want to transfer to another bank from a routine that is executing in high memory. (Recall that the only limitation is that the stack must not be in high memory.) The @BANK SVC function 0 provides a technique for automatically transferring to an address in the new bank. This technique is called the transfer function. It relies on the assumption that since you are managing the entire 32K bank 1 or 2, your application should know exactly where it needs to transfer (that is, where the application originally placed the code to execute).

The code to perform a bank transfer is similar to the above example. Register pair HL is loaded with the transfer address. Register C, which contains the number of the bank to invoke, must have its high order bit (bit 7) set. After the specified bank is enabled, control is passed to the transfer address that is in HL. Upon entry to your routine in the new bank (referred to here as "PROGB"), register HL will contain the old return address so that PROGB will know where to return transfer. Register C will also contain the old bank number with bit 7 set and register B will contain a zero. This register set-up provides for an easy return to the routine in the old bank that invoked the bank transfer. An illustration of the transfer code follows:

```
LD
                                 Specify bank 1
          LD
                                 Bring up bank Ø
          LD
                  HL + (TRAADR)
                                 Set the transfer
                                 ;address
          SET
                  7 .C
                                 iand denote a
                                 itransfer
          LD
                  A . @BANK
                                Set @BANK SVC (102)
          RST
                  28H
RETADR
          JR
                  NZ , ERROR
```

Control is returned to "RETADR" under either of two conditions. If there was an error in executing the bank transfer (for example, if an invalid bank number was specified or the stack pointer is in high memory), the returned condition is NZ. If the transfer took place and PROGB transferred back, the returned condition is Z. Thus, the Z flag shows whether or not there was a problem with the transfer.

If PROGB needs to provide a return code, it must be done by using register pair DE, IX, or IY, as registers AF, BC, and HL are used to perform the transfer. (Or, some other technique can be used, such as altering the return transfer address to a known error trapping routine.)

PROGB should contain code that is similar to that shown earlier. For example, PROGB could be:

```
PROGB
         PUSH
                 BC
                                Save old bank data
         PUSH
                 HL
                                Save the RET
                                address
         your PROGB routines
         POP
                 HI
                                Recover transfer
                                ;address
         POP
                 BC
                                iGet bank transfer
                                idata
         1 0
                 A+102
                                Set @BANK SVC
         RST
                 28H
         JR
                 NZ, ERROR
                                Error trap
```

PROGB saves the bank data (register BC). Don't forget that a transfer was effected and register C has bit 7 already set when PROGB is entered. PROGB also saves the address it needs to transfer back (which is in HL). It then performs whatever routines it has been coded for, recovers the transfer data, and issues the bank transfer request. As explained earlier, an NZ return condition from the @BANK SVC indicates that the bank transfer was not performed. You should verify that your application has not violated the integrity of the stack where the transfer data was stored.

Never place disk drivers, device drivers, device filters, or interrupt service routines in banks other than bank 0. It is possible to segment one of the above modules and place segments in bank 1 or 2, provided the segment containing the primary entry is placed in bank 0. You can transfer between segments by using the bank transfer techniques discussed above.

Device Driver and Filter Templates

Device independence has its roots in "byte I/O." Byte I/O is any I/O passed through a device channel one byte at a time.

Three primitive routines are available at the assembly language level for byte I/O. These byte I/O primitives can be used to build larger routines. The three primitives are the TRSDOS supervisor calls @GET, @PUT, and @CTL. @GET is used to input a byte from a device or file. @PUT is used to output a byte to a device or file. @CTL is used to communicate with the driver routine servicing the device or file.

Other supervisor calls perform byte I/O, such as @KBD (scan the keyboard and return the key code if a key is down), @DSP (display a character on the video screen), and @PRT (output a character to the line printer). These functions operate by first loading register pair DE with a pointer to a specific Device Control Block (DCB) assigned for use by the device, then issuing a @GET or @PUT SVC for input or output requests.

When TRSDOS passes control over to the device driver routine, the Z-80 flag conditions are unique for each different primitive. This enables the driver to establish which primitive was used to access the routine, so it can turn over the I/O request to the proper driver or filter subroutine according to the type of request — input, output, or control.

The following table shows the FLAG register conditions upon entry to a driver or filter:

```
C,NZ = @GET primitive

Z,NC = @PUT primitive

NZ,NC = @CTL primitive
```

Register B contains the I/O direction code: 1 = @GET, 2 = @PUT, 4 = @CTL Register C contains the character code that was passed in the @PUT or @CTL supervisor call. Register IX points to the TYPE byte (DCB+0) of the Device Control Block Registers BC, DE, HL, and IX have been saved on the stack and are available for use. Register AF is not saved; if you want it preserved, your program must do so.

Your driver must start with a standard front-end header (see "Memory Header"):

,			
BEGIN	JR	START	Go to actual code
	DEFW	MODEND-1	Last byte used by
	DEFB	7	imodule iLensth of name
Hannan	DEFM	'MODNAME'	Name DCB etr, for this
MODDCB	DEFW	\$-\$	imodule
	DEFW	Ø	Reserved by TRSDOS

At the start of the actual module code, test the condition of the F register flags for @GET, @PUT, and @CTL:

```
START EQU $

Actual module code start

JR C,WASGET ;Go if @GET request

JR Z,WASPUT ;Go if @PUT request

Was @CTL request
```

At the label START, a test is made on the carry flag. If the carry was set, then the disk primitive must have been an input request (@GET). An input request could be directed to a part of the driver which only handles input from the device.

If the request was not from the @GET primitive, the carry will not be set. The next test checks to see if the zero flag is set. The zero condition is preset when a @PUT primitive was the initial request. The jump to WASPUT can go to a part of the driver that deals specifically with output to the device.

If neither the zero nor carry flags are set, the routine falls through to the next instruction (not shown), which would begin the part of the driver that handles @CTL calls. For example, you may want to have an RS-232C driver handle a BREAK by issuing a @CTL call so that the RS-232C driver emits a true modem break, but a CONTROL C would @PUT a X'03.

Some drivers are written to assume that @CTL requests are to be handled exactly like @PUT requests. This is entirely up to the author and the function of the driver.

Note that when a device is routed to a disk file, TRSDOS ignores @CTL requests. That is, the @CTL codes are not written to the disk file.

On @GET requests, the character input should be placed in the accumulator. On output requests (either @PUT or @CTL), the character is obtained from register C. It is important for drivers and filters to observe return codes. Specifically, if the request is @GET and no byte is available, the driver returns an NZ condition and the accumulator contains a zero (that is, OR 1 : LD A,0 : RET). If a byte is available, the byte is placed in the accumulator and the Z flag is set (that is, LD A,CHAR : CP A : RET). If there is an input error, the error code is returned in the accumulator and the Z flag is reset (that is, LD A,ERRNUM : OR A : RET). On output requests, the accumulator will contain the byte output with the Z flag set if no error occurred. In the case of an output error, the accumulator must be loaded with the error code and the Z flag reset as shown above.

A filter module is inserted between the DCB and driver routine (or between the DCB and the current filter when it is applied to a DCB already filtered). The insertion is performed by the TRSDOS FILTER command once the filter module is resident and attached to a phantom DCB. The usual linkage for a filter is to access the chained module by calling the @CHNIO supervisor call with specific linkage data in registers IX and BC. Register IX is loaded with the filter's DCB pointer obtained from the memory header MODDCB pointer. Register B must contain the I/O direction code (1 = @GET, 2 = @PUT, 4 = @CTL). This code is already in register B when the filter is entered. You can either keep register B undisturbed or load it with the proper direction code. Also, output requests expect the output byte to be in register C.

The DCB pointer obtained from MODDCB is passed in register DE by the SET command and is loaded into MODDCB by your filter initialization routine. The initialization routine needs to relocate the filter to high memory and attach itself to the DCB assigned by the SET command. If the initialization front end had transferred the DCB pointer from DE to IX, then the following code could be used to establish the TYPE byte and vector for the filter:

```
LD (IX),47H ;Init DCB type to
LD (IX+1),E ;FILTER, G/P/C I/O,
LD (IX+2),D ;& stuff vector
```

A filter module can operate on input, output, control, or any combination based on the author's design. The memory header provides a region for user data storage conveniently indexed by the module.

An illustration of a filter follows. The purpose of this filter is to add a linefeed on output whenever a carriage return is to be sent. Although the filter requires no data storage, the technique for accessing data storage is shown.

```
BEGIN
          JR
                 START
                               Branch to start
         DEFW
                               Last byte used
                 FLTEND-1
         DEFB
                               iName length
                 6
         DEFM
                 'SAMPLE'
                               ;Name
                               iLink to DCB
MODDCB
         DEFW
                               Reserved
         DEFW
                 Ø
         Data storage area for your filter
         EQU
                 ØDH
CR
          EQU
                 ØAH
LF
DATA$
         EQU
                 $
DATA1
         EQU
                 $-DATA$
         DEFB
                 Ø
                                ¡Data storage
DATA2
         EQU
                 $-DATA$
          DEFB
                 Ø
                                ¡Data storage
          Start of filter
                 Z,GOTPUT
START
                               Go if @PUT
          JR
          @GET and @CTL requests are chained to
ŧ
          the next module attached to the device.
÷
          This is accomplished by falling through
          to the @CHNIO call. Note that the sample
÷
          filter does not affect the B register,
          so the filter does not have to load it
;
          with the direction code.
                                ¡Save your data
FLTPUT
          PUSH
                 IΧ
                                Pointer
          LD
                 IX, (MODDCB)
RXØ1
          EQU
                 $-2
                                Grab the DCB vector
                                and chain to it
          LD
                 A #@CHNIO
          RST
                 28H
          POP
                 ΙX
          RET
          Filter code
                 IX,PFDATA$
GOTPUT
          LD
                                Base register is
RXØ2
          EQU
                 $-2
                                sused to index data
          LD
                 A,C
                                Get character to
                                itest
                                ; If not CR, put it
          CP
                 CR
                 NZ,FLTPUT
          JR
          CALL
                 FLTPUT
                                selse put it
RXØ3
          EQU
                 $-2
                                Back on error
          RET
                 NZ
                 C,LF
                                Add linefeed
          LD
                 FLTPUT
          JR
FLTEND
          EQU
          Relocation table
                 RXØ1 , RXØ2 , RXØ3
RELTAB
          DEFW
                 $-RELTAB/2
TABLEN
          EQU
```

The relocation table, RELTAB, would be used by the filter initialization relocation routine.

@CTL Interfacing to Device Drivers

This section discusses the @CTL functions supported by the system device drivers. To invoke a @CTL function, point register pair DE to the Device Control Block (DCB), load the function code into register C, and issue the @CTL supervisor call. You can locate the DCB address by either 1) using the @GTDCB SVC, or 2) using the @OPEN SVC to open a File Control Block containing the device specification and using the FCB address. See the @CTL supervisor call for a list of the function codes and their meanings.

The @CTL functions are listed below for each driver.

Keyboard Driver (resident driver assigned to *KI)

A function value of X'03' clears the type-ahead buffer. This serves the same purpose as repeated calls to @KBD until no character is available.

A function value of X'FF' is reserved for system use.

All other function values are treated as @GET requests.

The module name assigned to this driver is "\$KI"

Video Driver (resident driver assigned to *DO)

All @CTL requests are treated as if they were @PUT requests.

The module name assigned to this driver is "\$DO".

Printer Driver (resident driver assigned to *PR)

The printer driver is transparent to all code values when requested by the @PUT SVC. That means that all values from X'00' through X'FF' (0-255) can be sent to the printer. If the FORMS filter is attached to the *PR device, then various codes are trapped and used by the filter according to parameters specified with the FORMS library command, as follows:

X'0D' — Generates a carriage return and optionally a linefeed (ADDLF). Generates form feeds as required.

X'0A' — Treated the same way as X'0D.

X'0C' — Generates form feeds (via repeated line feeds if soft form feed). (FFHARD = OFF)

X'09' - Advances to next tab column.

X'06' — Sets top-of-form by resetting the internal line counter to zero.

Other character codes may be altered if the user translation option of the FORMS command (XLATE) is set.

The printer driver accepts a function value of X'00' via the @CTL request to return the printer status. If the printer is available, the Z flag will be set and register A will contain X'30'. If the Z flag is reset, register A will contain the four highorder bits of the parallel printer port (bits 4-7).

The module name assigned to the printer driver is "\$PR". The module name of the FORMS filter is "\$FF".

COM Driver (non-resident driver for the RS-232C)

This driver handles the interfacing between the RS-232C hardware and byte I/O (usually the *CL device).

A @CTL function value of X'00' returns an image of the RS-232 status register in the accumulator. The Z flag will be set if the RS-232 is available for "sending" (that is, if the transmit holding register is empty and the flag conditions match as specified by SETCOM).

A function value of X'01' transmits a "modern break" until the next character is @PUT to the driver.

A function value of X'02' re-initializes the UART to the values last established by SETCOM.

A function value of X'04' enables or disables the WAKEUP feature.

All other function values are ignored and the driver returns with register A containing a zero value and the Z flag set.

The WAKEUP feature is useful for application software specializing in communications. The RS-232 hardware can generate a machine interrupt under any of three conditions: when the transmit holding register is empty, when a received character is available, or when an error condition has been detected (framing error, parity error, and so on). The COM driver makes use of the

"received character available" interrupt to take control when a fully formed character is in the holding register. The COM driver services the interrupt by reading the character and storing it in a one-character buffer. COM then normally returns from the interrupt.

An application can request that, instead of returning, control be passed to the application for immediate attention. Note that this action would occur during interrupt handling, and any processing by the application must be kept to a minimum before control is returned to COM via a RET instruction.

If you use a @CTL function value of X'04, then register IY must contain the address of the handling routine in your application. Upon return from the @CTL request, register IY contains the address of the previous WAKEUP vector. This should be restored when your application is finished with the WAKEUP feature.

When control is passed to your WAKEUP vector upon detection of a "receive character available" interrupt, certain information is immediately available. Register A contains an image of the UART status register. The Z flag is set if a valid character is actually available. The character, if any, is in the C register.

Since system overhead takes a small amount of time in the @GET supervisor call, you may need to @GET the character via standard device interfacing. This ensures that any filtering or linking in the *CL device chain will be honored. If, on the other hand, your application is attempting to transfer data at a very high rate (9600 baud or higher), you may need to bypass the @GET SVC and use the character immediately available in the C register. Note that this procedure bypasses the normal device chain (device routing and linking).

The module name of the COM driver is "\$CL"

8/Using the Supervisor Calls

Supervisor Calls (SVCs) are operating system routines that are available to assembly language programs. These routines alter certain system functions and conditions, provide file access, and perform various computations. They also perform I/O to the keyboard, video display, and printer.

Each SVC has a number which you specify to invoke it. These numbers range from \emptyset to 104.

In addition, under Version 6.2, you can write your own operating system routines using the numbers 124 through 127 to install your own SVC's. See Appendix E, "Programmable SVCs" for more information.

Calling Procedure

To call a TRSDOS SVC:

- Load the SVC number for the desired SVC into register A. Also load any other registers which are needed by the SVC, as detailed under Supervisor Calls.
- Execute a RST 28H instruction.

Note: If the SVC number supplied in register A is invalid, the system prints the message "System Error xx", where xx is usually 2B. It then returns you to TRSDOS Ready (not to the program that made the invalid SVC call).

The alternate register set (AF, BC, DE, HL) is not used by the operating system.

Program Entry and Return Conditions

When a program executed from the @CMNDI SVC is entered, the system return address is placed on the top of the stack. Register HL will point to the first non-blank character following the command name. Register BC will point to the first byte of the command line buffer.

Three methods of return from a program back to the system are available: the @ABORT SVC, the @EXIT SVC, and the RET instruction. For application programs and utilities, the normal return method is the @EXIT SVC. If no error condition is to be passed back, the HL register pair must contain a zero value. Any non-zero value in HL causes an active JCL to abort.

The @ABORT SVC can be used as an error return back to the system; it automatically aborts any active JCL processing. This is done by loading the value X'FFFF' into the HL register pair and internally executing an @EXIT SVC.

If stack integrity is maintained, a RET instruction can be used since the system return address is put on the stack by @CMNDI. This allows a return if the program was called with @CMNDR.

Most of the SVCs in TRSDOS Version 6 set the Z flag when the operation specified was successful. When an operation fails or encounters an error, the Z flag is reset (also known as NZ flag set) and a TRSDOS error code is placed in the A register. The remaining SVCs use the Z/NZ flag in differing ways, so you should refer to the description of the SVCs you are using to determine the exit conditions.

Supervisor Calls

The TRSDOS Supervisor Calls are:

Keyboard SVCs	Byte I/O SVCs
@CKBRKC @KBD @KEY @KEYIN Printer and Video SVCs	@CTL @GET @PUT File Control SVCs
@CLS @DSP @DSPLY @LOGER @LOGOT @MSG @PRT @PRINT @VDCTL	@CLOSE @FEXT @FNAME @FSPEC @INIT @REMOV @OPEN @RENAM
Disk SVCs	@BKSP @CKEOF
@DCINIT @DCRES @DCSTAT @RDSEC @RDSSC @RSLCT @RSTOR @SEEK @SLCT @STEPI @VRSEC @WRSEC @WRSEC @WRSSC	@CKEOF @LOC @LOF @PEOF @POSN @READ @REW @RREAD @RWRIT @SEEKSC @SKIP @VER @WEOF @WEOF @WRITE
System Control SVCs @ABORT @BREAK @CMNDI @CMNDR @EXIT @FLAGS @HIGH\$ @IPL @LOAD @RUN	@ADTSK @CKTSK @KLTSK @RMTSK @RPTSK
Special Purpose Disk SVCs	Special Overlay SVCs
@DIRRD @DIRWR @GTDCT @HDFMT @RDHDR @RDTRK	@CKDRV @DEBUG @DODIR @ERROR @PARAM @RAMDIR

Miscellaneous SVCs @BANK

Special Purpose SVCs

@CHNIO

@GTDCB @GTMOD

@DATE @DECHEX @DIV8

@DIV16

@HEXDEC

@HEX8

@HEX16 @MUL8

@MUL16

@PAUSE

@SOUND

@TIME

@WHERE

See the pages that follow for a detailed description of each supervisor call.

Abort Program

Loads HL with an X'FFFF' error code and exits through the @EXIT supervisor call. Any active JCL processing is aborted.

Entry Conditions:

A = 21 (X'15')

General:

This SVC does not return.

Example:

See the example for @EXIT in Sample Program B, lines 206-207.

Add an Interrupt Level Task

Adds an interrupt level task to the real time clock task table. The task slot number can be 0-11; however, some slots are already assigned to certain functions in TRSDOS. Slot assignments 0-7 are low priority tasks executing every 266.67 milliseconds. Slots 8-10 are medium priority tasks executing every 33.33 milliseconds. Slot 11 is a high priority task, executing every 16.66 milliseconds High Speed or 33.33 milliseconds Low Speed. The system uses task slots 3, 7, 9, and 10 for the ALIVE, TRACE, SPOOL, and TYPE-AHEAD functions, respectively.

It is a good practice to remove an existing task (using the @RMTSK or @KLTSK SVC) before installing a new task in the same task slot.

Entry Conditions:

A = 29 (X'1D')
DE = pointer to Task Control Block (TCB)
C = task slot assignment (0-11)

Exit Conditions:

Success always.

HL and AF are altered by this SVC.

The Task Control Block, or TCB, is a 2-byte block of RAM which contains the address of the task driver entry point. If your task is prefixed with the memory header described earlier under "Device Access," then the TCB can be stored in the memory header data storage area. If the task is not a driver or filter, the TCB can be stored in the memory header location MODDCB. Upon entry to your task routine, the IX register contains the TCB address.

Example:

See Sample Program F, lines 109-120.

Memory Bank Use

Controls 32K memory bank operation. The top half of the main 64K block is bank 0, and the alternate 64K block is divided into banks 1 and 2. The system maintains two locations to perform bank management. These areas are known as "bank available RAM" (BAR) and "bank in use RAM" (BUR).

If the Stack Pointer is not X'7FFE' or lower, the SVC aborts with an Error 43 only if $B=\emptyset$.

Entry Conditions:

- A = 102 (X'66')
- B selects one of the following functions:
 - If B = 0, the specified bank is selected and is made addressable.

The 32K bank starts at X'8000' and ends at X'FFFF!

C = bank number to be selected (0-2)
If bit 7 is set, then execution will resume in the newly loaded bank at the address specified.

HL = address to start execution in the new bank

If B = 1, reset BUR and show the bank not in use.

C = bank number to be selected (0-2)

If B = 2, test BUR if bank is in use.

C = bank number to be selected (0-2)

If B=3, set BUR to show bank in use.

C= bank number to be selected (0-2)

If B = 4, return number of bank currently selected.

Exit Conditions:

If B = 0:

Success, Z flag set.

C = the bank number that was replaced. If bit 7 was set in register C on entry, it is also set on exit.

HL = SVC return address. By keeping the contents of C and HL, you can later return to the instruction following the first @BANK SVC. See "Interfacing RAM Banks 1 and 2" for more information.

Failure, NZ flag set. Bank not present or parameter error.

A = error number

If B = 1

Success, Z flag set. Bank available for use.

Failure, NZ flag set, Bank not present,

If B = 2

Success always

If Z flag is set, then the bank is available for use.

If NZ flag is set, then test register A:

If A ≠ X'2B', then the bank is either in use or it does not exist on your machine. Banks 1 and 2 produce this error on a 64K machine.

If A = X'2B' then an entry parameter is out of range.

If B = 3:

Success, Z flag set. Bank is now reserved for your use.

Failure, NZ flag set. Test register A:

If A ≠ X'2B', then the bank is already in use or does not exist. Banks 1 and 2 produce this error on a 64K machine.

If A = X'2B' then an entry parameter is out of range.

If B = 4:

Success always.

A = number of the bank which is currently resident

General:

AF is altered for all functions.

BC is altered if the SVC is successful.

Example:

See the section "Interfacing RAM Banks 1 and 2."

Backspace One Logical Record

Performs a backspace of one logical record.

Entry Conditions:

A = 61 (X'3D')

DE = pointer to FCB of the file to backspace

Exit Conditions:

If the Z flag is set or if A = X'1C' or X'1D', then the operation was successful. The LOC pointer to the file was backspaced one record. Otherwise, A = error number.

If A = X'1C' is returned, the file pointer is positioned at the end of the file. Any Appending operations would be performed here.

If $\acute{A}= X^{\prime}1D^{\prime}$ is returned, the file pointer is positioned beyond the end of the file

General:

Only AF is altered by this SVC.

If the LOC pointer was at record 0 when the call was executed, the results are indeterminate.

Example:

See the example for @LOC in Sample Program C, lines 305-311.

Set Break Vector

Sets a user or system break vector. The BREAK vector is an abort mechanism; there is no return.

The BREAK vector executes whenever the following conditions occur at the same time: 1) the Program Counter is greater than X'2400,' 2) the BREAK key is pressed, and 3) a real time clock interrupt which executes 30 times per second occurs.

After executing this SVC, you must reset bit 4 of SFLAG\$. The BREAK flag in KFLAG\$ (bit 0) requires the setting of SFLAG\$ bit 4 and a delay of 0.1 to 0.5 second to clear any other interrupts that may be pending. Then you can enter your BREAK key handler (in which the BREAK key bit in SFLAG\$ is reset). See KFLAG\$ and SFLAG\$ in the section about the @FLAGS SVC for more information.

Entry Conditions:

A = 103 (X'67')

HL = user break vector

HL = 0 (sets system break vector)

Exit Conditions:

Success always.

HL = existing break vector (if user break vector was set)

Note: @EXIT and @CMNDI automatically restore BREAK to the system handler. @CMNDR does not do this.

Pass Control to Next Module in Device Chain

Passes control to the next module in the device chain.

Entry Conditions:

A = 20 (X'14')

IX = contents of DCB in the header block

B = GET/PUT/CTL direction code (1/2/4)

C = character (if output request)

General:

IX is not checked for validity.

Example:

See the section "Device Driver and Filter Templates."

Check BREAK bit and clear it

Version 6.2 only

Checks to see if the BREAK key has been pressed. If a BREAK condition exists, @ CKBRKC resets the break bit, Bit @ of KFLAG\$

Entry Conditions:

A = 106(X'6A')

Exit Conditions:

Success always.

If Z flag is set, the break bit was not detected. If NZ flag is set, the break bit was detected and is cleared. If the BREAK key is being depressed, the SVC will not return until the key is released.

General:

Only AF is altered by this SVC

		(
		(
		([']

Check Drive

Checks a drive reference to ensure that the drive is in the system and a TRSDOS Version 6 or LDOS 5.1.3 (Model III Hard Disk Operating System) formatted disk is in place.

Entry Conditions:

A = 33 (X'21')

C=logical drive number (0-7)

Exit Conditions:

Success always.

If Z flag is set, the drive is ready.

If CF is set, the disk is write protected.

If NZ flag is set, the drive is not ready. The user may examine DCT + 0 to see if the drive is disabled.

Example:

See Sample Program D, lines 35-55.

Check for End-Of-File

Checks for the end of file at the current logical record number.

Entry Conditions:

A = 62 (X'3E')

DE = pointer to the FCB of the file to check

Exit Conditions:

Success always.

If Z flag is set, LOC does not point at the end of file (LOC < LOF).

If NZ flag is set, test A for error number:

If $A=X^*1C$, LOC points at the end of the file (LOC=LOF). If $A=X^*1D$, LOC points beyond the end of the file (LOC > LOF).

If $A \neq X'1C'$ or X'1D', then A = error number.

General:

Only AF is altered by this SVC

Example:

See Sample Program C, lines 352-353

Check if Task Slot in Use

Checks to see if the specified task slot is in use.

Entry Conditions:

A = 28 (X'1C') C = task slot to check (0-11)

Exit Conditions:

Success always.

If Z flag is set, the task slot is available for use. If NZ flag is set, the task slot is already in use.

General:

AF and HL are altered by this SVC.

Example

See Sample Program F, lines 70-73.

Close a File or Device

Terminates output to a file or device. Any unsaved data in the buffer area is saved to disk and the directory is updated. All files that have been written to must be closed, as well as all files opened with UPDATE or higher access.

If you remove a diskette containing an open file, any attempt to close the file results in the message:

** CLOSE FAULT ** error message, <ENTER> to retry, <BREAK> to abort

where error message is usually "Drive not ready" You may put the diskette back in the drive and:

- 1. Press (ENTER) to close the file.
- 2. Press (BREAK) to abort the close.

If you press (BREAK), the NZ flag is set and Register A contains X'20', the error code for an Illegal drive number error.

Entry Conditions:

A = 60 (X'3C')

DE = pointer to FCB or DCB to close

Exit Conditions:

Success, Z flag set. The file or device was closed. The filespec (excluding the password) or the devspec is returned to the FCB or DCB.

Failure, NZ flag set.

A = error number

General:

Only AF is altered by this SVC.

Example:

See Sample Program C, lines 360-368

Clear Video Screen

Version 6.2 only

Clears the video screen by sending a Home Cursor (X'1C') and Clear to End of Frame (X'1F') sequence to the video driver.

Entry Conditions:

A = 105(X'69')

Exit Conditions:

Success, Z flag is set. Failure, NZ is set. A = error number

General:

Only AF is altered by this SVC.

Execute Command with Return to System

Passes a command string to TRSDOS for execution. After execution is complete, control returns to TRSDOS Ready. If the command gets an error, it still returns to TRSDOS Ready.

Entry Conditions:

A = 24 (X'18')

HL = pointer to buffer containing command string terminated with X'0D' (up to 80 bytes, including the X'0D')

General:

This SVC does not return.

Example:

See Sample Program E, lines 43-58.

Execute Command

Executes a command or program and returns to the calling program. The executed program should maintain the Stack Pointer and exit via a RET instruction. All TRSDOS library commands comply with this requirement.

If bit 4 of CFLAG\$ is set (see the @FLAG\$ SVC), then @CMNDR executes only system library commands.

Entry Conditions:

A = 25 (X'19')

HL = pointer to buffer containing command string terminated with X'0D' (up to 80 bytes, including the X'0D')

Exit Conditions:

Success always.

HL = return code (See the section "Converting to TRSDOS Version 6" for information on return codes.)

Registers AF, BC, DE, IX, and IY are altered by the command or program executed by this SVC.

If the command invokes a user program which uses the alternate registers, they are modified also.

Example:

See Sample Program E, lines 18-29.

Output a Control Byte

Outputs a control byte to a logical device. The DCB TYPE byte (DCB $+ \emptyset$, Bit 2) must permit CTL operation. See the section "@CTL Interfacing to Device Drivers" for information on which of the functions listed below are supported by the system device drivers.

```
Entry Conditions:
```

A = 5 (X'05')

DE = pointer to DCB to control output

C selects one of the following functions:

If $C = \emptyset$, the status of the specified device will be returned.

If C = 1, the driver is requested to send a BREAK or force an interrupt.

If C = 2, the initialization code of the driver is to be executed.

If C=3, all buffers in the driver are to be reset. This causes all pending I/O to be cleared.

If C = 4, the wakeup vector for an interrupt-driven driver is specified by the caller.

IY = address to vector when leaving driver. If IY = 0, then the wakeup vector function is disabled. The RS-232C driver COM/DVR (\$CL), is the only system driver that provides wakeup vectoring

If C = 8, the next character to be read will be returned. This allows data to be "previewed" before the actual @GET returns the character.

Exit Conditions:

If $C = \emptyset$,

Z flag set, device is ready

NZ flag set, device is busy

A = status image, if applicable

Note: This is a hardware dependent image.

If C = 1.

Success, Z flag set. BREAK or interrupt generated.

Failure, NZ flag set

A = error number

If C=2.

Success, Z flag set. Driver initialized

Failure, NZ flag set

A = error number

If C = 3,

Success, Z flag set. Buffers cleared.

Failure, NZ flag set.

A = error number

If C = 4.

Success always.

IY = previous vector address

This function is ignored if the driver does not support wakeup vectoring.

If C = 8,

Success, Z flag set. Next character returned.

A = next character in buffer

Failure, NZ flag set. Test register A:

If A = 0, no pending character is in buffer

If A ≠ 0, A contains error number. (TRSDOS driver returns Error 43.)

General:

BC, DE, HL, and IX are saved.

Function codes 5 to 7, 9 to 31, and 255 are reserved for the system. Function codes 32 to 254 are available for user definition.

Entry and exit conditions for user-defined functions are up to the design of the usersupplied driver.

Example:

See the section "Device Driver and Filter Templates"

Get Date

Returns today's date in display format (MM/DD/YY).

Entry Conditions:

A = 18 (X'12')

HL = pointer to 8-byte buffer to receive date string

Exit Conditions:

Success always.

HL = pointer to the end of the buffer supplied + 1
DE= pointer to start of DATE\$ storage area in TRSDOS
BC is altered by this SVC.

Example:

See Sample Program F, lines 252-253.

Initialize the FDC

Issues a disk controller initialization command. The floppy disk driver treats this the same as @RSTOR (SVC 44).

Entry Conditions:

A = 42 (X'2A')

C=logical drive number (0-7)

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

Example:

See the example for @CKDRV in Sample Program D, lines 38-39.

Reset the FDC

Issues a disk controller reset command. The floppy disk driver treats this the same as @RSTOR (SVC 44).

Entry Conditions:

A = 43 (X'2B') C=logical drive number (0-7)

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

See the example for @CKDRV in Sample Program D, lines 38-39.

Test if Drive Assigned in DCT

Tests to determine whether a drive is defined in the Drive Code Table (DCT).

Entry Conditions:

A = 40 (X'28') C=logical drive number (0-7)

Exit Conditions:

Success always.

If Z is set, the specified drive is already defined in the DCT. If NZ is set, the specified drive is not defined in the DCT.

Only AF is altered by this SVC.

Example:

See Sample Program D, lines 27-33

Enter DEBUG

Forces the system to enter the DEBUG utility. Pressing (§) (ENTER) from the DEBUG monitor causes program execution to continue with the next instruction. If you want to use the functions in the extended debugger when DEBUG is entered in this fashion, you must issue the DEBUG (E) command (optionally with the @CMNDR SVC) before this SVC is executed.

Entry Conditions:

A = 27 (X'1B')

General:

This SVC does not return unless (6) is entered in DEBUG.

Example:

See Sample Program A, lines 54-60.

Convert Decimal ASCII to Binary

Converts a decimal ASCII string to a 16-bit binary number. Overflow is not trapped. Conversion stops on the first out-of-range character.

Entry Conditions:

A = 96 (X'60')

HL = pointer to decimal string

Exit Conditions:

Success always.

BC = binary conversion of ASCII string HL = pointer to the terminating byte

AF is altered by this SVC.

Example:

See Sample Program B, lines 88-95.

Directory Record Read

Reads a directory sector that contains the directory entry for a specified Directory Entry Code (DEC). The sector is placed in the system buffer and the register pair HL points to the first byte of the directory entry specified by the DEC.

Entry Conditions:

A = 87 (X'57')
B = Directory Entry Code of the file
C = logical drive number (0-7)

Exit Conditions:

Success, Z flag set.

HL = pointer to directory entry specified by register B
Failure, NZ flag set.

A = error number
HL is altered.

General:

AF is always altered.

If the drive does not contain a disk, this SVC may hang indefinitely waiting for formatted media to be placed in the drive. The programmer should perform a @CKDRV SVC before executing this call.

If the Directory Entry Code is invalid, the SVC may not return or it may return with the Z flag set and HL pointing to a random address. Care should be taken to avoid using the wrong value for the DEC in this call.

Example:

See Sample Program C, lines 152-174

Directory Record Write

Writes the system buffer back to the disk directory sector that contains the directory entry of the specified DEC.

Entry Conditions:

A = 88 (X'58')

B = Directory Entry Code of the file

C=logical drive number (0-7)

Exit Conditions:

Success, Z flag set.

HL = pointer to directory entry specified by register B

Failure, NZ flag set.

A = error number

HL is altered.

General:

AF is always altered.

If the drive does not contain a disk, this SVC may hang indefinitely waiting for formatted media to be placed in the drive. The programmer should perform a @CKDRV SVC before executing this call.

If the Directory Entry Code is invalid, the SVC may not return or it may return with the Z flag set and HL pointing to a random address. Care should be taken to avoid using the wrong value for the DEC in this call.

Example:

See the example for @DIRRD in Sample Program C, lines 152-174.

8-Bit Divide

Performs an 8-bit unsigned integer divide.

Entry Conditions:

A = 93 (X'5D') E = dividend C = divisor

Exit Conditions:

Success always.

A = quotient E = remainder

No other registers are altered.

Example:

See Sample Program B, lines 61-64.

16-Bit by 8-Bit Divide

Performs a division of a 16-bit unsigned integer by an 8-bit unsigned integer.

Entry Conditions:

A = 94 (X'5E') HL = dividend C = divisor

Exit Conditions:

Success always.

HL = quotient
A = remainder
No other registers are altered.

Example:

See Sample Program B, lines 105-109.

Do Directory Display / Buffer

Reads files from a disk directory or finds the free space on a disk. The directory information is either displayed on the screen (in five-across format) or sent to a buffer. The directory information buffer consists of 18 bytes per active, visible file: the first 16 bytes of the directory record, plus the ERN (ending record number). An X'FF' marks the buffer end.

Entry Conditions:

A = 34 (X'22')

C = logical drive number (0-7)

B selects one of the following functions:

If B = 0, the directory of the visible, non-system files on the disk in the specified drive is displayed on the screen. The filenames are displayed in columns, 5 filenames per line.

If B = 1, the directory is written to memory.

HL = pointer to buffer to receive information

If B=2, a directory of the files on the specified drive is displayed for files that are visible, non-system, and match the extension partspec pointed to by HL.

HL = partspec for the filename's extension

This field must contain a valid 3-character extension, padded with dollar signs (\$). For example, to display all visible, nonsystem files that have the letter 'C' as the first character of the extension, HL should point to the string "C\$\$":

If B = 3, a directory of the files on the specified drive is written to the buffer that is specified by HL for files that match the extension partspec pointed to by HL.

HL = pointer to the 3-byte partspec and to the buffer to receive the directory records (see general notes)

Keep in mind that the area pointed to by HL is shared. If you are using this buffer more than once, you have to re-create the partspec in the buffer before each call because the previous call will have erased the partspec by writing the directory records.

If B = 4, the disk name, original free space, and current free space on the disk is read.

HL = pointer to a 20-byte buffer to receive information

Exit Conditions:

Success, Z flag set.

If B = 1 or 3, the directory records have been stored.

HL = pointer to the beginning of the buffer

If B = 0 or 2, the filenames or matching filenames are displayed with 5 filenames per line.

If B=4, the disk name and free space information are stored in the format:

Bytes 0-7 = Disk name. Disk name is padded on the right with blanks (X'20').

Bytes 8-15=Creation date (the date the disk was formatted or was the target disk in a mirror image backup). The date is in the format MM/DD/YY.

Bytes 16-17 = Total K originally available in binary LSB-MSB format.

Bytes 18-19=Free K available now in binary LSB-MSB format.

HL = pointer to the beginning of the data area

Failure, NZ flag set.

A = error number

General:

AF is the only register altered by this SVC.

The size of the buffer to receive directory records must be large enough to hold directory entries for the maximum number of files allowed on the drive and disk you specify. For example, if the drive is a hard disk, you must be able to store 256 directory entries, and each entry requires 18 bytes of storage. For more information on calculating the amount of space needed for this buffer, see the tables under "Directory Records." They give the maximum number of entries allowed on a given type of disk. You must add 2 records to this value when B = 1 to store the directory entry for DIR/SYS and BOOT/SYS.

Example:

See Sample Program E, lines 32-40.

Display Character

Outputs a byte to the video display. The byte is displayed at the current cursor position.

Entry Conditions:

A = 2 (X'02')C = byte to display

Exit Conditions:

Success, Z flag set.

A = byte displayed
Failure, NZ flag set.

A = error number

General:

DE is altered by this SVC.

Example:

See Sample Program C, lines 219-221

Display Message Line

Displays a message line, starting at the current cursor position. The line must be terminated with either a carriage return (X'0D') or an ETX (X'03'). If an ETX terminates the line, the cursor is positioned immediately after the last character displayed.

Entry Conditions:

A = 10 (X'0A') HL = pointer to first byte of message

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

AF and DE are altered by this SVC.

Example:

See Sample Program C, lines 35-37.

Entry to Post an Error Message

Provides an entry to post an error message. If bit 7 of register C is set, the error message is displayed and return is made to the calling program If bit 6 is not set, the extended error message is displayed. Under versions prior to 6 2 the error display is in the following format:

```
*** Errcod=xx, Error message string ***

<filespec or devspec>
Referenced at X'dddd'
```

Under Version 6.2 the error display is in the following format:

```
**Error code = xx, Returns to X' dddd'
**Error message string
<filespec, devspec, or open FCB/DCB status>
Last SVC = nnn, Returned to X' rrrr'
```

dddd is the return address of the @ERROR SVC in the application program nnn is the last SVC executed before the @ERROR SVC request.
rrrr is the address the previous SVC returned to in the application program

If bit 6 is set, then only the "Error message string" is displayed. This bit is ignored if bit 6 of SFLAG\$ (the extended error message bit) is set. If bit 6 of CFLAG\$ is set, then no error message is displayed. If bit 7 of CFLAG\$ is set, then the "Error message string" is placed in a user buffer pointed to by register pair DE. See @FLAG\$ (SVC 101) for more information on SFLAG\$ and CFLAG\$.

Entry Conditions:

A = 26 (X'1A')

C = error number with bits 6 and 7 optionally set

Exit Conditions:

Success always

General:

To avoid a looping condition that could result from the display device generating an error, do not check for errors after returning from @ERROR. If you do not set bit 6 of register C, then you should execute this SVC only after an error has actually occurred.

Example:

See Sample Program C, lines 379-389

Exit to TRSDOS

This is the normal program exit and return to TRSDOS. An error exit can be done by placing a non-zero value in HL. Values 1 to 62 indicate a primary error as described in TRSDOS Error Codes (Appendix A). (A non-zero value in HL causes an active JCL to abort.)

Entry Conditions:

A = 22 (X'16')

HL = Return Code

If $HL = \emptyset$, then no error on exit.

If HL = 0, then the @ABORT SVC returns X'FFFF' in HL automatically.

General:

This SVC does not return.

Example:

See Sample Program B, lines 206-207.

Set Up Default File Extension

Inserts a default file extension into the File Control Block if the file specification entered contains no extension. @FEXT must be done before the file is opened.

Entry Conditions:

A = 79 (X'4F')

DE=pointer to FCB

HL = pointer to default extension (3 characters; alphabetic characters must be upper case and first character must be a letter)

Exit Conditions:

Success always.

AF and BC are altered by this SVC.

If the default extension is used, HL is also altered.

Example

See Sample Program C, lines 111-132.

Point IY to System Flag Table

Points the IY register to the base of the system flag table. The status flags listed below can be referenced off IY. You can alter those bits marked with an asterisk (°). Bits without an asterisk are indicators of current conditions, or are unused or reserved.

Note: You may wish to save KFLAG\$ and SFLAG\$ if you intend to modify them in your program, and restore them on exit.

Entry Conditions:

A = 101 (X'65')

Exit Conditions:

Success always.

IY = pointer to the following system information:

IY – 1 Contains the overlay request number of the last system module resident in the system overlay region.

IY + 0 = AFLAG\$ (allocation flag under Version 6.2 only)

Contains the starting cylinder number to be used when searching for free space on a diskette. It is normally 1. If the starting cylinder number is larger than the number of cylinders for a particular drive, 1 is used for that drive.

IY+2 = CFLAG\$

* bit 7 — If set, then @ERROR will transfer the "Error message string" to your buffer instead of displaying it. The message is terminated with X'0D.'

* bit 6 — If set, do not display system error messages 0-62. See @ ERROR (SVC 26) for more information.

* bit 5 — If set, sysgen is not allowed

 bit 4 — If set, then @CMNDR will execute only system library commands.

bit 3 — If set, @RUN is requested from either the SET or SYSTEM (DRIVER =) commands.

bit 2 — If set, @KEYIN is executing due to a request from SYS1.

bit 1 — If set, @CMNDR is executing. This bit is reset by @EXIT and @CMNDI.

bit 0 — If set, HIGH\$ cannot be changed using @HIGH\$
 (SVC 100). This bit is reset by @EXIT and @CMNDI.

IY + 3 = DFLAG\$ (device flag)

 bit 7 — "1" if GRAPHIC printer capability desired on screen print (<u>CONTROL</u>) : causes screen print. See the SYS-TEM (GRAPHIC) command under "Technical Information on TRSDOS Commands and Utilities.")

bit 6 — "1" if KSM module is resident

bit 5 - Currently unused

bit 4 - "1" if MemDisk active

bit 3 — Reserved

bit 2 — "1" if Disk Verify is enabled

bit 1 — "1" if TYPE-AHEAD is active bit 0 — "1" if SPOOL is active

IY+4 = EFLAG\$ (ECI flag under Version 6.2 only)

Indicates the presence of an ECI program. If any of the bits are set, an ECI is used, rather than the SYS1 interpreter. The ECI program may use these bits as neccesary. However, at least one bit must be set or the ECI is not executed.

```
IY+5 = FEMSK$ (mask for port ØFEH)
IY + 8 = IFLAG$
                   (international flag)
       * bit 7
                - If "1," 7-bit printer filter is active
                   If "0," normal 8-bit filters are present
       * bit 6
                - If "1," international character translation will be per-
                   formed by printer driver
                   If "0," characters received by printer driver will be sent
                   to the printer unchanged
        bit 5
                - Reserved for future languages
        bit 4
                - Reserved for future languages
        bit 3

    Reserved for future languages

        bit 2
                - Reserved for future languages
        bit 1
                - If "1," German version of TRSDQS is present
                - If "1," French version of TRSDOS is present
        bit 0
         If bits 5-0 are all zero, then USA version of TRSDOS is present.
IY + 10 = KFLAG$ (keyboard flag)
                  - "1" if a character is present in the type-ahead buffer
        bit 7
        bit 6
                - Currently unused
       * bit 5
                - "1" if CAPS lock is set
        bit 4
                - Currently unused
        bit 3
                - Currently unused
       * bit 2
                - "1" if (ENTER) has been pressed
       * bit 1
                - "1" if SHIFT @ has been pressed (PAUSE)
                - "1" if (BREAK) has been pressed
       * bit Ø
        Note: To use bits 0-2, you must first reset them and then test to
        see if they become set.
IY + 12 = MODOUT (image of port ØECH)
IY + 13 = NFLAG$ (network flag under Version 6.2)
        bit 7

    Reserved for system use

        bit 6
                — If set, the application program is in the task processor.
                   Programmers must not modify this bit.
        bit 5
                - Reserved for system use
        bit 4
                - Reserved for system use
        bit 3
                - Reserved for system use.
        bit 2
                - Reserved for system use
        bit 1
                - Reserved for system use
       * bit 0
                - If set, the "file open bit" is written to the directory.
IY + 14 = OPREG$ (memory management & video control image)
IY + 17 = RFLAG$ (retry flag under Version 6.2 only)
                  Indicates the number of retrys for the floppy disk driver.
                  This should be an even number larger than two.
IY + 18 = SFLAG$ (system flag)
        bit 7

 - "1" if DEBUG is to be turned on

       * bit 6
                -"1" if extended error messages desired (see
                   @ERROR for message format); overrides the setting
                   of bit 6 of register C on @ERROR (SVC 26) and
                   should be used only when testing
        bit 5
                   "1" if DO commands are being executed
       * bit 4
                - "1" if BREAK disabled
        bit 3
                - "1" if the hardware is running at 4 mhz (SYSTEM
                   (FAST)) If "0," the hardware is running at 2 mhz (SYS-
                   TEM (SLOW)).
       * bit 2
                - "1" if LOAD called from RUN
       * bit 1
                — "1" if running an EXECute only file
       * bit Ø
                - "1" specifies no check for matching LRL on file open
                   and do not set file open bit in directory. This bit should
                   be set just before executing an @OPEN (SVC 59) if
                   you want to force the opened file to be READ only dur-
                   ing current I/O operations. As soon as either call is
                   executed, SFLAG$ bit 0 is reset. If you want to disable
                   LRL checking on another file, you must set SFLAG$
```

bit 0 again.

```
IY + 19 = TFLAG$ (type flag under Version 6.2 only)
                  Identifies the Radio Shack hardware model. TFLAG$
                 allows programs to be aware of the hardware environ-
                 ment and the character sets available for the display
                 Current assignments are:
                   2 indicates Model II
                   4 indicates Model 4
                   5 indicates Model 4P
                  12 indicates Model 12
IY + 20 = UFLAG$ (user flag under Version 6.2 only)
                  May be set by application programs and is sysgened
                  properly.
IY + 21 = VFLAG$
        bit 7
               - Reserved for system use
       * bit 6
                - "1" selects solid cursor, "0" selects blinking cursor
                - Reserved for system use
        bit 5
       * bit 4
                - "1" if real time clock is displayed on the screen
         bits 0-3 - Reserved for system use
IY + 22 = WRINTMASK$ (mask for WRINTMASK port)
                         (pointer to the high order byte of the SVC table
IY + 26 = SVCTABPTR$
                         address; low order byte = 00)
IY + 27 = Version ID byte (60H = TRSDOS version 6.0.x.x)
                          61H=TRSDOS version 61.x.x. etc.)
IY - 47 = Operating system release number. Provides a third and fourth
           character (12H = TRSDOS version x.x.1.2)
1Y + 28
to
IY + 30 = @ICNFG vector
1Y + 31
IY + 33 = @KITSK vector
```


Get Filename

Gets the filename and extension from the directory using the specified Directory Entry Code (DEC) for the file.

Entry Conditions:

A = 80 (X'50')

DE = pointer to 15-byte buffer to receive filename/extension:drive, fol-

lowed by a X'0D' as a terminator

B = DEC of desired file

C = logical drive number of drive containing file (0-7)

Exit Conditions:

Success, Z flag set.

HL = pointer to directory entry specified by register B

Failure, NZ flag set.
A = error number

HL is altered.

General:

AF and BC are always altered.

If the drive does not contain a disk, this SVC may hang indefinitely waiting for formatted media to be placed in the drive. The programmer should perform a @CKDRV SVC before executing this call.

If the Directory Entry Code is invalid, the SVC may not return or it may return with the Z flag set and HL pointing to a random address. Care should be taken to avoid using the wrong value for the DEC in this call.

Example:

See Sample Program C, lines 274-286.

		í
		Ċ

Assign File or Device Specification

Moves a file or device specification from an input buffer into a File Control Block (FCB). Conversion of lower case to upper case is made automatically.

Entry Conditions:

A = 78 (X'4E')

HL = pointer to buffer containing filespec or devspec

DE=pointer to 32-byte FCB or DCB

Exit Conditions:

Success always.

If the Z flag is set, the file specification is valid.

HL = pointer to terminating character

DE=pointer to start of FCB

If the NZ flag is set, a syntax error was found in the filespec.

HL = pointer to invalid character

DE=pointer to start of FCB

A = invalid character

General:

AF and BC are altered.

Example:

See Sample Program C, lines 53-65

Get One Byte From Device or File

Gets a byte from a logical device or a file. The DCB TYPE byte (DCB $+ \emptyset$, Bit \emptyset) must permit a GET operation for this call to be successful.

Entry Conditions:

A = 3 (X'03') DE = pointer to DCB or FCB

Exit Conditions:

Success, Z flag set. A = character read from the device or fileFailure, NZ flag set. Test register A: If $A = \emptyset$, no character was available. If $A \neq \emptyset$, A contains error number.

Example:

See the section "Device Driver and Filter Templates."

Get Device Control Block Address

Finds the location of a Device Control Block (DCB). If $DE = \emptyset$ (no device name specified), HL returns the address of the first unused DCB found.

Entry Conditions:

A = 82 (X'52')

DE = 2-character device name (E = first character, D = second character)

Exit Conditions:

Success, Z flag set. DCB was found. HL = pointer to start of DCB Failure, NZ flag set. No DCB was available. A = Error 8 (Device not available) HL is altered.

General:

AF is always altered by this SVC.

Example:

See the section "Device Driver and Filter Templates"

Get Drive Code Table Address

Gets the address of the Drive Code Table for the requested drive.

Entry Conditions:

A = 81 (X'51')

C=logical drive number (0-7)

Exit Conditions:

Success always.

IY = pointer to the DCT entry for the specified drive AF is always altered by this SVC.

General:

If the drive number is out of range, the IY pointer will be invalid. This call does not return Z/NZ to indicate if the drive number specified is valid (0-7) or enabled.

Example:

See the example for @DCSTAT in Sample Program D, lines 27-33.

Get Memory Module Address

Locates a memory module, if the standard memory header is at the start of the module. The scanning starts with the system drivers in low memory, then moves to any high memory modules. If any routine is encountered that does not start with a proper header, scanning stops.

Entry Conditions:

A = 83 (X'53')

DE = pointer to memory module name in upper case, terminated with any character in the range 00-31

Exit Conditions:

Success always.

If the Z flag is set, the module was found.

HL = pointer to first byte of memory header

DE = pointer to first byte after module name

If the NZ flag is set, the module was not found.

HL is altered.

General:

AF is always altered by this SVC.

Example:

See Sample Program F, lines 144-154.

Hard Disk Format

Passes a format drive command to a hard disk driver. If the hard disk controller accepts it as a valid command, then it formats the entire disk drive. If the hard disk controller does not accept it, then an error is returned. Radio Shack hardware does not currently support @HDFMT.

Entry Conditions:

A = 52 (X'34') C=logical drive number (0-7)

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

Convert Binary to Decimal ASCII

Converts a binary number in HL to decimal ASCII.

Entry Conditions:

A = 97 (X'61')

HL=number to convert

DE=pointer to 5-character buffer to hold converted number

Exit Conditions:

Success always.

DE = pointer to end of buffer + 1

AF, BC, and HL are altered by this SVC.

Example:

See Sample Program B, lines 73-76.

Convert 1 Byte to Hex ASCII

Converts a 1-byte number to hexadecimal ASCII.

Entry Conditions:

A = 98 (X'62')

C = number to convert

HL = pointer to a 2-character buffer to hold the converted number

Exit Conditions:

Success always.

HL = pointer to the end of buffer + 1

Only AF is altered by this SVC.

Example:

See Sample Program B, lines 236-246.

Convert 2 Bytes to Hex ASCII

Converts a 2-byte number to hexadecimal ASCII.

Entry Conditions:

A = 99 (X'63')

DE=number to convert

HL = pointer to 4-character buffer to hold converted number

Exit Conditions:

Success always.

HL = pointer to end of buffer + 1

Only AF is altered by this SVC.

Example:

See Sample Program B, lines 248-258.

Get or Alter HIGH\$ or LOW\$

Provides the means to read or alter the HIGH\$ and LOW\$ values.

Note: HIGH\$ must be greater than LOW\$. LOW\$ is reset to X'2FFF' by @EXIT, @ABORT, and @CMNDI.

Entry Conditions:

A = 100 (X'64')

B selects HIGH\$ or LOW\$

If B = 0, SVC deals with HIGH\$

If B≠0, SVC deals with LOW\$

HL selects one of the following functions:

If HL = 0, the current HIGH\$ or LOW\$ is returned

If HL #0, then HIGH\$ or LOW\$ is set to the value in HL

Exit Conditions:

Success, Z flag set.

HL = current HIGH\$ or LOW\$. If HL # 0 on entry, then HIGH\$ or LOW\$ is now set to that value.

Failure, NZ flag set.

A = error number

General:

If bit 0 of CFLAG\$ is set (see @FLAG\$), then HIGH\$ cannot be changed with this call. The call returns error 43, "SVC parameter error."

Example:

See Sample Program F, lines 75-86.

Open or Initialize File

Opens a file. If the file is not found, this SVC creates it according to the file specification.

Entry Conditions:

A = 58 (X'3A')

HL = pointer to 256-byte disk I/O buffer

DE=pointer to FCB containing the file specification

B = Logical Record Length to be used while file is open

Exit Conditions:

Success, Z flag set. File was opened or created.

The CF flag is set if a new file was created.

Failure, NZ flag set.

A = error number

General:

Only AF is altered by this SVC.

The file open bit is set in the directory if the access level is UPDATE or greater.

Example:

See Sample Program C, lines 260-272.

Reboot the System

Does a software reset. Floppy drive 0 must contain a system disk. @IPL uses the standard boot sequence, the same as for a hard reset (pressing the reset button). Memory locations X'41E5'-X'4225' and X'4300'-X'43FF' are altered during the boot of the machine.

Entry Conditions:

A = 0 (X'00')

General:

This SVC does not return.

Scan Keyboard and Return

Scans the keyboard and returns a character if a key is pressed. If no key is pressed, a zero value is returned.

Entry Conditions:

A = 8 (X'08')

Exit Conditions:

Success, Z flag set.

A = character pressed

Failure, NZ set.

If $A = \emptyset$, no character was available. If $A \neq \emptyset$, then A contains error number.

General:

DE is altered by this SVC.

Example:

See Sample Program C, lines 198-200.

Scan *KI Device, Wait for Character

Scans the *KI device and returns with a character. It does not return until a character is input to the device.

Note: The system suspends execution of the program that issued the SVC until a character can be obtained. Background tasks will continue to run normally.

Entry Conditions:

A = 1 (X'01')

Exit Conditions:

Success, Z flag set.

A = character entered
Failure, NZ flag set.

A = error number

General:

DE is altered by this SVC.

Example:

See Sample Program B, lines 202-203.

Accept a Line of Input

Accepts a line of input until terminated by either an (ENTER) or a (BREAK). Entries are displayed on the screen, starting at the current cursor position. Backspace, tab, and line delete are supported. If JCL is active, the line is fetched from the active JCL file.

Entry Conditions:

A = 9 (X'09')

HL = pointer to user line buffer of length B+1

B = maximum number of characters to input

 $C = \emptyset$

Exit Conditions:

Success, Z flag set.

HL = pointer to start of buffer

B = actual number of characters input

CF is set if (BREAK) terminated the input.

Failure, NZ flag set.

A = error number

General:

DE and C are altered by this SVC.

Example:

See Sample Program C, lines 39-47.

Remove Currently Executing Task

When called by an executing task driver, removes the task assignment from the task table and returns to the foreground application that was interrupted.

Entry Conditions:

A = 32 (X'20')

General:

This SVC does not return.

Example:

See the example for @RMTSK in Sample Program F, lines 134-142.

Load Program File

Loads a program file. The file must be in load module format.

Entry Conditions:

A = 76 (X'4C')

DE = pointer to FCB containing filespec of the file to load

Exit Conditions:

Success, Z flag set.

HL = transfer address retrieved from file

Failure, NZ flag set.

A = error number

Example:

See Sample Program A, lines 50-56.

Calculate Current Logical Record Number

Returns the current logical record number.

Entry Conditions:

A = 63 (X'3F') DE = pointer to the file's FCB

Exit Conditions:

Success, Z flag set.
BC = logical record number
Failure, NZ flag set.
A = error number

General:

AF is altered by this SVC.

Example:

See Sample Program C, lines 305-311.

Calculate the EOF Logical Record Number

Returns the EOF (End of File) logical record number.

Entry Conditions:

A = 64 (X'40')

DE = pointer to FCB for the file to check

Exit Conditions:

Success, Z flag set.

BC = the EOF logical record number

Failure, NZ flag set.

A = error number

General:

Only AF is altered by this SVC.

Example:

See the example for @LOC in Sample Program C, lines 305-311.

Issue Log Message

Issues a log message to the Job Log. The message can be any character string terminating with a carriage return (X'0D').

Entry Conditions:

A = 11 (X'0B')

HL = pointer to first character in message line

Exit Conditions:

Success, Z flag set.
Failure, NZ flag set.
A = error number

General

Only AF is altered by this SVC.

Example:

LD HL,TEXT Point at message to output LD A,@LOGER and output it to the Job

with an <ENTER>.

RST 28H Call the @LOGER SVC

TEXT: DEFM 'This is a message for the Job Log'
DEFB ØDH ;Message must be terminated

Display and Log Message

Displays and logs a message. Performs the same function as @DSPLY followed by @LOGER.

Entry Conditions:

A = 12 (X'0C')

HL = pointer to first character in message line

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

Only AF is altered by this SVC.

To avoid a looping condition that could result from the display device generating an error, no error checking should be done after returning from @LOGOT.

Example:

```
LD HL,TEXT ;Point at message to output
LD A,@LOGOT ;and output it to the Job
;Log AND the display
;Call the @LOGOT SVC
```


Send Message to Device

Sends a message line to any device or file.

Entry Conditions:

A = 13 (X'0D')

DE= pointer to DCB or FCB of device or file to receive output HL = pointer to message line terminated with X'0D' or X'03'

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

Only AF is altered by this SVC.

Example:

LD HL, TEXT ¡Point at message to output LD DE , DCBP Point at the device control iblock for our device LD A,@MSG and write this text to it RST ;Call the @MSG SVC

. . .

TEXT: DEFM 'D555-555<LOGIN USER>' ¡Text to write to

this device. In this case,

it is a dialing modem. Terminate the message

DEFB 03H

8-Bit Multiplication

Performs an 8-bit by 8-bit unsigned integer multiplication. The resultant product must fit into an 8-bit field.

Entry Conditions:

A = 90 (X'5A') C = multiplicand E = multiplier

Exit Conditions:

Success always.

A=product

DE is altered by this SVC.

Example:

See Sample Program B, lines 150-153.

16-Bit by 8-Bit Multiplication

Performs an unsigned integer multiplication of a 16-bit multiplicand by an 8-bit multiplier. The resultant product is stored in a 3-byte register field.

Entry Conditions:

A = 91 (X'5B') HL = multiplicand C = multiplier

Exit Conditions:

Success always.

HL = two high-order bytes of product
A = low-order byte of product
DE is altered by this SVC.

Example:

See Sample Program B, lines 183-187.

Open Existing File or Device

Opens an existing file or device.

Entry Conditions:

A = 59 (X'3B')

HL = pointer to 256-byte disk I/O buffer

DE=pointer to FCB or DCB containing filespec or devspec

B = logical record length for open file

Exit Conditions:

Success, Z flag set.

Failure, NZ flag set

A = error number

General:

AF is altered by this SVC.

The file open bit is set in the directory if the access level is UPDATE or greater.

Example:

See Sample Program C, lines 134-150.

Parse Parameter String

Parses an optional parameter string. Its primary function is to parse command parameters contained in a command line starting with a parenthesis. The acceptable parameter format is:

PARM = X'nnnn'....hexadecimal entry
PARM = nnnnndecimal entry
PARM = "string" ... alphanumeric entry
PARM = flagON, OFF, Y, N, YES, or NO
Note: Entering a parameter with no equal sign or value is the same as using PARM = ON. Entering PARM = with no value is the same as using PARM = OFF.

Entry Conditions:

A = 17 (X'11')

DE=pointer to beginning of your parameter table

HL = pointer to command line to parse (the parameter string is enclosed within parentheses)

Exit Conditions:

Success always.

If Z is set, either valid parameters or no parameters were found

If NZ is set, a bad parameter was found.

General:

NZ is not returned if parameter types other than those specified are entered. The application must check the validity of the response byte.

The valid parameters are contained in a user table which must be in one of the following formats. (Parameter names must consist of alphanumeric characters, the first of which is a letter.)

For use with TRSDOS Version 6, use this format:

The parameter table starts with a single byte X'80'. Each parameter is stored in a variable length field as described below.

1) Type Byte (Type and length byte)

Bit 7—If set, accept numeric value

Bit 6 — If set, accept flag parameter

Bit 5 — If set, accept "string" value

Bit 4 — If set, accept first character of name as abbreviation

Bits 3-0 - Length of parameter name

- 2) Actual Parameter Name
- 3) Response byte (Type and length found)

Bit 7 - Numeric value found

Bit 6-Flag parameter found

Bit 5 - String parameter found

Bits 4-0—Length of parameter entered. If length is 0 and the 2-byte vector points to a quotation mark (X'22'), then the parameter was a null string. Otherwise, a length of 0 indicates that the parameter was longer than 31 characters.

4) 2-byte address vector to receive the parsed parameter values.

The 2-byte memory area pointed to by the address field of your table receives the value of PARM if PARM is non-string. If a string is entered, the 2-byte memory area receives the address of the first byte of "string." The entries ON, YES, and Y return a value of X'FFFF'; OFF, NO, and N return X'0000" If a parameter name is specified on the command line and is fol-

lowed by an equal sign and no value, then X'0000' or NO is returned. If a parameter name is used on the command line without the equal sign, then a value of X'FFFF' or ON is assumed. For any allowed parameter that is completely omitted on the command line, the 2-byte area remains unchanged and the response byte is 0.

The parameter table is terminated with a single byte X'00'.

For compatibility with LDOS 5.1.3, use this format:

A 6-character "word" left justified and padded with blanks followed by a 2-byte address to receive the parsed values. Repeat word and address for as many parameters as are necessary. You must place a byte of X'00' at the end of the table.

Example:

Example.			
	LD	HL +COMAND	Point at command buffer
	LD	DE, PARM	Point at parameter list
	LD	A.@PARAM	Parse the items on the
	LU	a rei anani	
			command line
	RST	28H	Call the @PARAM SVC
	JR	NZ,ERROR	An error occurred (not
			included here)
	LD	A,(RESP)	Get response code
	AND	Ø4ØH	Test response flags
	ЛR	Z,BAD	User specified something
			ilike UPDATE=X'1234' or
			;UPDATE="HELLO"
	LD	A,(VAL)	Get 1st byte of VAL word
	OR	Α	Test the value
	JR	Z,OFF	SUPDATE=OFF or UPDATE=NO was
			specified
	JR	ON	JUPDATE=ON or UPDATE=YES was
	717	ON	
			specified
COMAND:	DEFS	80	Area where command is
			istored
PARM:	DEFB	8ØH	¡Table header code
1 11/11 #			
	DEFB	40H+6	140 says we want a flag
			(YES/NO). G is length of
			ithe parameter name
	DEFM	'UPDATE'	Parameter name
RESP:	DEFB	0	¡Response area
WED1 .	DEFW	VAL	
			Vector to VAL
	DEFB	Ø	;End of Table code
VAL:	DEFS	2	¡Area to receive a parameter
			ivalue

Suspend Program Execution

Suspends program execution for a specified period of time and goes into a "holding" state. The delay is at least 14.3 microseconds per count.

Entry Conditions:

A = 16 (X'10') BC = delay count

Exit Conditions:

Success always.

Example:

LD BC,36A2H ;Wait for about 200 milli-;seconds, 14.3 usecs * ;13986 is approx, 200

imsecs

LD A,@PAUSE ;Suspend execution RST 28H ;Call the @PAUSE SVC

Position to End Of File

Positions an open file to the End Record Number (ERN). An end-of-file-encountered error (X'1C') is returned if the operation is successful. Your program may ignore this error.

Entry Conditions:

A = 65 (X'41')

DE = pointer to FCB of the file to position

Exit Conditions:

NZ flag always set.

If A = X'1C', then success.

If $A \neq X'1C'$, then failure. A = error number

General:

AF is always altered by this SVC.

Example:

See the example for @LOC in Sample Program C, lines 305-311.

Position File

Positions a file to a logical record. This is useful for positioning to records of a random access file.

When the @POSN routine is used, Bit 6 of FCB+1 is automatically set. This ensures that the EOF (End Of File) is updated when the file is closed only if the NRN (Next Record Number) exceeds the current ERN (End Record Number).

Note that @POSN must be used for each write, even if two records are side by side.

Entry Conditions:

A = 66 (X'42')
DE = pointer to FCB for the file to position
BC = the logical record number

Exit Conditions:

If Z flag is set or A = X'1C' or X'1D, then success.

The file was positioned.

Otherwise, failure.

A = error number

General:

AF is always altered by this SVC.

Example:

See the example for @LOC in Sample Program C, lines 305-311.

Prints Message Line

Outputs a message line to the printer. The line must be terminated with either a carriage return (X'0D') or an ETX (X'03').

Entry Conditions:

A = 14 (X'0E')

HL = pointer to message to be output

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

AF and DE are altered by this SVC.

Example:

LD HL , TEXT Text to be output to the Printer A,@PRINT ;Write this message to the Printer device RST 28H ;Call the @PRINT SVC . . . TEXT: DEFB ØCH Do a Top of Form DEFM 'Report continued Page DEFB 3 FTerminate with a ⟨ETX⟩ or

ian (ENTER)

Send Character to Printer

Outputs a byte to the line printer.

Entry Conditions:

A = 6 (X'06')

C=character to print

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

AF and DE are altered by this SVC

If the line printer is attached but becomes unavailable (out of paper, out of ribbon, turned off, off-line, buffer full, etc.), the printer driver waits approximately ten seconds. If the printer is still not ready, a "Device not available" error is returned.

Example:

```
LD
            A, (PAGE)
                      Get the page number
            A , 'Ø'
                      Make it ASCII
      ADD
      LD
            C +A
                      Put the value here
      LD
            A,@PRT
                      Write this character to the
                       ;printer
                       ;Call the @PRT SVC
      RST
            28H
PAGE: DEFB 2
                      Start with page 2
```


Write One Byte to Device or File

Outputs a byte to a logical device or file. The DCB TYPE byte (DCB + 0, Bit 1) must permit PUT operation.

Entry Conditions:

A = 4 (X'04')

DE = pointer to DCB or FCB of the output device

C = byte to output

Exit Conditions:

Success, Z flag set.

Failure, NZ flag set.

A = error number

General:

AF is always altered by this SVC.

Example:

See the section "Device Driver and Filter Templates."

Get Directory Record or Free Space

Reads the directory information of visible files from a disk directory, or gets the amount of free space on a disk.

Entry Conditions:

A = 35 (X'23')

HL = pointer to RAM buffer to receive information

B = logical drive number (0-7)

C selects one of the following functions:

If $C = \emptyset$, get directory records of all visible files.

If C = 255, get free space information.

If C = 1-254, get a single directory record (see below).

Exit Conditions:

Success, Z flag set. Failure, NZ flag set.

A = error number

Each directory record requires 22 bytes of space in the buffer. If $C=\emptyset$, one additional byte is needed to mark the end of the buffer.

For single directory records, the number in the C register should be one less than the desired directory record. For example, if C=1, directory record 2 is fetched and put in the buffer. If a single record request is for an inactive record or an invisible file, the A register returns an error code 25 (File access denied).

The directory information is placed in the buffer as follows:

Byte Contents

00-14 filename/ext:d (left justified, padded with spaces)

15 protection level, 0 to 6

16 EOF offset byte

17 logical record length, 0 to 255

18-19 ERN of file

20-21 file size in K (1024-byte blocks)

22 LAST RECORD ONLY. Contains "+" to mark buffer end.

If C = 255, HL should point to a 4-byte buffer. Upon return, the buffer contains:

Bytes 00-01 Space in use in K, stored LSB, MSB

Bytes 02-03 Space available in K, stored LSB, MSB

Example:

See the example for @DODIR in Sample Program E, lines 32-40.

Read a Sector Header

Reads the next ID header when supported by the controller driver. The floppy disk driver supplied treats this as a @RDSEC (SVC 49).

Entry Conditions:

A = 48 (X'30')

HL = pointer to buffer to receive the data

D = cylinder to read
C = logical drive number
E = sector to read

Exit Conditions:

Success, Z flag set.

Failure, NZ flag set.

A = error number

Example:

See the example for @RDSEC in Sample Program D, lines 63-66.

Read Sector

Transfers a sector of data from the disk to your buffer.

Entry Conditions:

A = 49 (X'31')

HL = pointer to the buffer to receive the sector
D = cylinder to read
E = sector to read

C = logical drive number (0-7)

Exit Conditions:

Success, Z flag set. Failure, NZ flag set.

A = error number

General:

Only AF is altered by this SVC

Example:

See Sample Program D, lines 63-66

Read System Sector

Reads the specified system (directory) sector. If the cylinder number in register D is not the directory cylinder, the value in D is changed to reflect the real directory cylinder and the sector is then read.

Entry Conditions:

A = 85 (X'55')

HL = pointer to the buffer to receive the sector

D = cylinder to read

E = sector to read

C = logical drive number (0-7)

Exit Conditions:

Success, Z flag set.

Failure, NZ flag set.

A = error number

General

Only AF is altered by this SVC.

Example:

See Sample Program D, lines 78-92.

Read a Track

Reads an entire track when supported by the controller driver. The floppy disk driver supplied treats this as a @RDSEC (SVC 49) and does not do a track read.

Entry Conditions:

A = 51 (X'33')

HL = pointer to buffer to receive the sector

D = track to read

C = logical drive number

E = sector to read

Exit Conditions:

Success, Z flag set. Failure, NZ flag set.

A = error number

General:

AF is altered by the supplied floppy disk driver.

Example:

See the example for @RDSEC in Sample Program D, lines 63-66.

Read a Record

Reads a logical record from a file. If the LRL defined at open time was 256 (specified by 0), then the NRN sector is transferred to the buffer established at open time. For LRL between 1 and 255, the next logical record is placed into a user record buffer, UREC. The 3-byte NRN is updated after the read operation.

Entry Conditions:

A = 67 (X'43')

DE=pointer to FCB for the file to read

HL = pointer to user record buffer UREC (needed if LRL = 1-255; unused if LRL = 256)

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

Example:

See Sample Program C, lines 300-304.

Remove File or Device

Removes a file or device.

If a file is to be removed, the File Control Block must be in an open condition. When this SVC is performed, the file's directory is updated and the space occupied by the file is deallocated.

If a device was specified, the device is closed. To remove a device, use the REMOVE library command.

Entry Conditions:

A = 57 (X'39')
DE = pointer to FCB or DCB to remove

Exit Conditions:

Success, Z flag set.
Failure, NZ flag set.
A = error number

Example:

See Sample Program C, lines 223-231.

Rename File or Device

Changes a file's filename and/or extension.

Entry Conditions:

A = 56 (X'38')

DE=pointer to an FCB containing the file's current name

This FCB must be in a closed state.

HL = pointer to new filename string terminated with a X'0D' or X'03.' This filespec must be in upper case and must be a valid filespec. You can convert the filespec to upper case and check its validity by using the @FSPEC SVC before using @RENAM.

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

After the call is completed, the FCB pointed to by DE is altered. Only AF is altered by this SVC.

Example:

	LD	DE,FCB	Point at a closed FCB containing the old
	LD	HL ,NEW	¡Point to the new filespec
	LD	A,@RENAM	Change the name of the
	RST	28H	Call the GRENAM SVC
FCB:	DEFS	32	A File Control Block used by the @RENAM SVC. In this example, it is assumed that an @FSPEC SVC has loaded a filespec into the FCB before the @RENAM SVC is performed.
NEW:	DEFM	'NEWNAME/TXT'	The new filespec for the
	DEFB	ØDH	Terminate the filespec

Rewind File to Beginning

Rewinds a file to its beginning and resets the 3-byte NRN to 0. The next record to be read or written sequentially is the first record of the file.

Entry Conditions:

A = 68 (X'44') DE = pointer to FCB for the file to rewind

Exit Conditions:

Success, Z flag set. File positioned to record number 0.

Failure, NZ flag set.

A = error number

AF is always altered by this SVC.

See the example for @LOC in Sample Program C, lines 305-311.

Remove Interrupt Level Task

Removes an interrupt level task from the Task Control Block table.

Entry Conditions:

A = 30 (X'1E')

C=task slot assignment to remove (0-11)

Exit Conditions:

Success always.

HL and DE are altered by this SVC.

Example:

See Sample Program F, lines 134-142

Replace Task Vector

Exits the task process executing and replaces the currently executing task's vector address in the Task Control Block table with the address following the SVC instruction. Return is made to the foreground application that was interrupted.

Entry Conditions:

A = 31 (X'1F')

General:

This SVC does not return.

Example:

LD A, RPTSK Replace this task with the

ione located at the
ifollowing address:

RST 28H

¡Call the @RPTSK SVC

NEWADD: DEFW Ø

¡Address of the new task is ¡loaded here. This word Imust be immediately after ;the @RPTSK SVC. The label ¡NEWADD is present only to ¡allow the address to be

istored.

Reread Sector

Forces a reread of the current sector to occur before the next I/O request is performed. Its most probable use is in applications that reuse the disk I/O buffer for multiple files, to make sure that the buffer contains the proper file sector. This routine is valid only for byte I/O or blocked files. Do not use it when positioned at the start of a file.

Entry Conditions:

A = 69 (X'45')

DE = pointer to FCB for the file to reread

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

AF is always altered by this SVC.

Example:

LD DE,FCB ;Point to File Control Block;
iof the file that requires;
ithe re-read
LD A,@RREAD ;Before next I/O, reload;
ithe current sector into;
ithe system buffer for;
ithis file
RST 28H ;Call the @RREAD SVC

Test for Drive Busy

Performs a test of the last selected drive to see if it is in a busy state. If busy, it is re-selected until it is no longer busy.

Entry Conditions:

```
Å = 47 (X'2F')
C = logical drive number (0-7)
```

Exit Conditions:

Success always.

Only AF is altered by this SVC.

Example:

```
LD C,1 Test Drive 1 to see if it its busy.

LD A,@RSLCT IIf it is, continue its leader it RST 28H Call the @RSLCT SVC
```


Issue FDC RESTORE Command

Issues a disk controller RESTORE command.

Entry Conditions:

A = 44 (X'2C') C=logical drive number (0-7)

Exit Conditions:

Success, Z flag set. Failure, NZ flag set.

A = error number

Example:

See the example for @CKDRV in Sample Program D, lines 38-39.

Run Program

Loads and executes a program file. If an error occurs during the load, the system prints the appropriate message and returns.

Entry Conditions:

A = 77 (X'4D')

DE = pointer to FCB containing the filespec of the file to RUN

for information on return codes.)

Note: The FCB must be located where the program being loaded will not overwrite it.

Exit Conditions:

Success, the new program is loaded and executed.
Failure, the error is displayed and return is made to your program.
HL = return code (See the section "Converting to TRSDOS Version 6"

General:

HL is returned unchanged if no error occurred and can be used as a pointer to a command line.

Example:

See Sample Program A, lines 62-74

Rewrite Sector

Rewrites the current sector, following a write operation. The @WRITE function advances the NRN after the sector is written. @RWRIT decrements the NRN and writes the disk buffer again. Do not use @RWRIT when positioned to the start of a file.

Entry Conditions:

A = 70 (X'46')

DE = pointer to FCB for the file to rewrite

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

Example:

LD DE,FCB ;Point to the File Control ;Block
LD A,@RWRIT ;Perform a re-write of the ;current sector
RST 28H ;Call the @RWRIT SVC

Seek a Cylinder

Seeks a specified cylinder and sector. @SEEK does not return an error if you specified a non-existent drive or an invalid cylinder. @SEEK performs no action if the specified drive is a hard disk.

Note: Seek of a sector is not supported by TRS-80 hardware. An implied seek is included in sector reads and writes.

Entry Conditions:

A = 46 (X'2E')

C=logical drive number

D=cylinder to seek

E = sector to seek

Exit Conditions:

Success always.

Only AF is altered by this SVC.

Seek Cylinder and Sector

Seeks the cylinder and sector corresponding to the next record of the specified file. (This is done by examining the NRN field of the FCB.) No error is returned on physical seek errors.

Entry Conditions:

A = 71 (X'47') DE = pointer to the file's FCB

Exit Conditions:

Success always.

Example:

Point to the File Control DE,FCB LD ;Block A,@SEEKSC ;Cause the next sector to be SEEKed before it is

factually needed RST 28H ;Call the @SEEKSC SVC

Skip a Record

Causes a skip past the next logical record. Only the record number contained in the FCB is changed; no physical I/O takes place.

Entry Conditions:

A = 72 (X'48')

DE = pointer to FCB for the file to skip

Exit Conditions:

If the Z flag is set or if A = X'1C' or X'1D', then the operation was successful. Otherwise, A = error number. If A = X'1C' is returned, the file pointer is positioned at the end of the file. Any Appending operations would be performed here. If A = X'1D' is returned, the file pointer is positioned beyond the end of the file.

General:

AF is altered by this SVC.

BC contains the current record number. This is the same value as that returned by the @LOC SVC.

Example:

See the example for @LOC in Sample Program C, lines 305-311.

Select a New Drive

Selects a drive. The time delay specified in your configuration (SYSTEM (DELAY = Y/N)) is made if the drive selection requires it

Entry Conditions:

A = 41 (X'29') C=logical drive number (0-7)

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

Only AF is altered by this SVC.

Sound Generation

Generates sound using specified tone and duration codes. Interrupts are disabled during execution.

Entry Conditions:

A = 104 (X'68')

B=function code

bits 0-2: tone selection (0-7 with 0 = highest and 7 = lowest) bits 3-7: tone duration (0-31 with 0 = shortest and 31 = longest)

Exit Conditions:

Success always.

Only AF is altered by this SVC.

Example:

See Sample Program B, lines 43-45.

Issue FDC STEP IN Command

Issues a disk controller STEP IN command. This moves the drive head to the next higher-numbered cylinder. @STEPI is intended for sequential read/write operations, such as disk formatting.

Entry Conditions:

A = 45 (X'2D') C=logical drive number

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

Only AF is altered by this SVC.

Get Time

Gets the system time in display format (HH:MM:SS).

Entry Conditions:

A = 19 (X'13')

HL = pointer to buffer to receive the time string

Exit Conditions:

Success always.

HL = pointer to the end of buffer + 1
DE= pointer to start of TIME\$ storage area in TRSDOS
AF and BC are altered by this SVC.

Example:

See the example for @DATE in Sample Program F, lines 252-253.

Video Functions

Performs various functions related to the video display. The B register is used to pass the function number.

Entry Conditions:

A = 15 (X'0F')

B selects one of the following functions:

If B = 1, return the character at the screen position specified by HL.

H=row on the screen (0-23), where 0 is the top row L = column on the screen (0-79), where 0 is the leftmost column

If B=2, display the specified character at the position specified by HL.

C=character to be displayed

H=row on the screen (0-23), where 0 is the top row

L = column on the screen (0-79), where 0 is the leftmost column

If B = 3, move the cursor to the position specified by HL. This is done even if the cursor is not currently displayed.

H=row on the screen (0-23), where 0 is the top row

L = column on the screen (0-79), where 0 is the leftmost column

If B = 4, return the current position of the cursor.

If B = 5, move a 1920-byte block of data to video memory. HL = pointer to 1920-byte buffer to move to video memory

If B = 6, move a 1920-byte block of data from video memory to a buffer you supply. In 40 line by 24 character mode, there must be a character in each alternating byte for proper display.

HL = pointer to 1920-byte buffer to store copy of video memory HL must be in the range X'23FF' < HL < X'EC01

If B = 7, scroll protect the specified number of lines from the top of the screen.

C=number of lines to scroll protect (0-7). Once set, scroll protect can be removed only by executing @VDCTL with B=7 and C=0, or by resetting the system. Clearing the screen with SHIFT]CLEAR erases the data in the scroll protect area, but the scroll protect still exists.

If B = 8, change cursor character to specified character. If the cursor is currently not displayed, the character is accepted anyway and is used as the cursor character when it is turned back on. The default cursor character is an underscore (X'5F') under Version 6.2 and a X'B0' under previous versions.

C=character to use as the cursor character

If B=9, (under Version 6.2 only) transfer 80 characters to or from the screen.

If C = 0, move characters from the buffer to the screen

If C = 1, move characters from the screen to the buffer

H = row on the screen

DE = pointer to 80 byte buffer

Note: The video RAM area in the Models 4 and 4P is 2048 bytes (2K). The first 1920 bytes can be displayed. The remaining bytes contain the type-ahead buffer and other system buffers

Exit Conditions:

if B = 1:

Success, Z flag set.

A = character found at the location specified by HL

DE is altered. Failure, NZ flag set.

A = error number

If B = 2:

Success, Z flag set.

DE is altered

Failure, NZ flag set.

A = error number

If B = 3:

Success, Z flag set.

DE and HL are altered.

Failure, NZ flag set.

A = error number

If B = 4:

Success always.

HL-row and column position of the cursor. H-row on the screen (0-23), where 0 is the top row; L= column on the

screen (0-79), where 0 is the leftmost column.

If B = 5:

Success always.

HL = pointer to the last byte moved to the video + 1

BC and DE are altered.

If B = 6:

Success always.

BC, DE, and HL are altered.

If B = 7:

Success always.

BC and DE are altered

If B = 8:

Success always.

A = previous cursor character

DE is altered.

If B = 9 (under Version 6.2 only):

Success, Z flag set.

BC, HL, DE are altered.

Failure, NZ flag set because H is out of range.

A = error code 43 (X'2B').

General:

Functions 5, 6, and 7 do not do range checking on the entry parameters.

If HL is not in the valid range in functions 5 and 6, the results may be

unpredictable.

Only function 3 (B=3) moves the cursor.

If C is greater than 7 in function 7, it is treated as modulo 8.

AF and B are altered by this SVC.

Example:

See Sample Program F, lines 304-327.

Write and Verify a Record

Performs a @WRITE operation followed by a test read of the sector (if the write required physical I/O) to verify that it is readable.

If the logical record length is less than 256, then the logical record in the user buffer UREC is transferred to the file. If the LRL is equal to 256, a full sector write is made using the disk I/O buffer identified at file open time.

Entry Conditions:

A = 73 (X'49')

DE = pointer to FCB for the file to verify

Exit Conditions:

Success, Z flag set.

HL = pointer to user buffer containing the logical record

Failure, NZ flag set.

A = error number

General:

Only AF is altered by this SVC.

Example:

See Sample Program C, lines 338-346.

Verify Sector

Verifies a sector without transferring any data from disk.

Entry Conditions:

A = 50 (X'32')

D=cylinder to verify

E = sector to verify

C=logical drive number (0-7)

Exit Conditions:

Success, Z flag set.

Failure, NZ flag set

A = error number

General:

AF is always altered by this SVC.

If the sector is a system sector, the sector is readable if an error 6 is returned; any other error number signifies an error has occurred.

Example:

See the example for @WRSEC in Sample Program D, lines 68-76.

Write End Of File

Forces the system to update the directory entry with the current end-of-file information.

Entry Conditions:

A = 74 (X'4A')

DE = pointer to the FCB for the file to WEOF

Exit Conditions:

Success, Z flag set. Failure, NZ flag set. A = error number

General:

AF is always altered by this SVC.

Example:

LD DE,FCB ;Point at the File Control ;Block

LD A,@WEOF ;Force the directory entry ;to be updated now, ;instead of when the file ;is closed ;Call the @WEOF SVC

Locate Origin of SVC

Used to resolve the relocation address of the calling routine.

Entry Conditions:

A = 7 (X'07')

Exit Conditions:

Success always.

HL=pointer to address following RST 28H instruction AF is always altered by this SVC.

Example:

See Sample Program F, lines 36-60.

Write a Record

Causes a write to the next record identified in the File Control Block.

If the logical record length is less than 256, then the logical record in the user buffer UREC is transferred to the file. If the LRL is equal to 256, a full sector write is made using the disk I/O buffer identified at file open time.

Entry Conditions:

A = 75 (X'4B')

HL = pointer to user record buffer UREC (unused if LRL = 256)

DE=pointer to FCB for the file to write

Exit Conditions:

Success, Z flag set.

Failure, NZ flag set.

A = error number

General:

AF is always altered by this SVC.

Example:

See the example for @VER in Sample Program C, lines 338-346.

Write a Sector

Writes a sector to the disk.

Entry Conditions:

A = 53 (X'35')

HL = pointer to the buffer containing the sector of data

D = cylinder to write E = sector to write

C = logical drive number (0-7)

Exit Conditions:

Success, Z flag set. Failure, NZ flag set.

A = error number

General:

Only AF is altered by this SVC.

Example:

See Sample Program D, lines 68-76.

Write a System Sector

Writes a system sector (used in directory cylinder).

Entry Conditions:

A = 54 (X'36')

HL = pointer to the buffer containing the sector of data

D = cylinder to write
E = sector to write
C = logical drive number

Exit Conditions:

Success, Z flag set.

Failure, NZ flag set.

A = error number

General:

Only AF is altered by this SVC.

Example:

See Sample Program D, lines 94-104.

Write a Track

Writes an entire track of properly formatted data. The data format must conform to that described in the disk controller's reference manual. @WRTRK must always be preceded by @SLCT.

Entry Conditions:

A = 55 (X'37')

HL = pointer to format data

D = track to write C = logical drive number (0-7)

Exit Conditions:

Success, Z flag set. Failure, NZ flag set.

A = error number

General:

Only AF is altered by this SVC.

Numerical List of SVCs

Following is a numerical list of the SVCs:

Dec	Hex	Label	Function
Ø	00	@IPL	Reboot the system
1	01	@KEY	Scan *KI device, wait for character
2	02	@DSP	Display character at cursor, advance cursor
3	03	@GET	Get one byte from a logical device
4	04	@PUT	Write one byte to a logical device
5	05	@CTL	Make a control request to a logical device
6	Ø6	@PRT	Send character to the line printer
7	07	@WHERE	Locate origin of CALL
8	08	@KBD	Scan keyboard and return
9	09	@KEYIN	Accept a line of input
10	ØA	@DSPLY	Display a message line
11	ØB	@LOGER	Issue a log message
12	ØC	@LOGOT	Display and log a message
13	ØD	@MSG	Message line handler
14	ØE	@PRINT	Print a message line
15	ØF	@VDCTL	Position/locate cursor, get/put character at cursor
16	10	@PAUSE	Suspend program execution
17	11	@PARAM	Parse an optional parameter string
18	12	@DATE	Get system date in the format MM/ DD/YY
19	13	@TIME	Get system time in the format HH:MM:SS
20	14	@CHNIO	Pass control to the next module in a device chain
21	15	@ABORT	Load HL with X'FFFF' error and goto @ EXIT
22 23	16	@EXIT	Exit program and return to TRSDOS Reserved for future use
24	18	@CMNDI	Entry to command interpreter with return to the system
25	19	@CMNDR	Entry to command interpreter with return to the user
26	1A	@ERROR	Entry to post an error message
27	1B	@DEBUG	Enter DEBUG
28	1C	@CKTSK	Check if task slot in use
29	1D	@ADTSK	Add an interrupt level task
30	1E	@RMTSK	Remove an interrupt level task
31	1F	@RPTSK	Replace the currently executing task vector
32	20	@KLTSK	Remove the currently executing task
33	21	@CKDRV	Check for drive availability
34	22	@DODIR	Do a directory display/buffer
35	23	@RAMDIR	Get directory record(s) or free space into RAM
36-39			Reserved for future use
40	28	@DCSTAT	Test if drive is assigned in DCT
41	29	@SLCT	Select a new drive
42	2A	@DCINIT	Initialize the FDC
43	2B	@DCRES	Reset the FDC
44	2C	@RSTOR	Issue FDC RESTORE command
45	2D	@STEPI	Issue FDC STEP IN command

Dec	Hex	Label	Function
46 47 48 49 50 51 52 53 54	2E 2F 30 31 32 33 34 35 36	@SEEK @RSLCT @RDHDR @RDSEC @VRSEC @RDTRK @HDFMT @WRSEC @WRSSC	Seek a cylinder Test if requested drive is busy Read a sector header Read a sector Verify a sector Read a track Hard disk format Write a sector Write a systern sector
55 56 57 58 59 60 61 62	37 38 39 3A 3B 3C 3D 3E	@WRTRK @RENAM @REMOV @INIT @OPEN @CLOSE @BKSP @CKEOF	Write a track Rename a file Remove a file or device Open or initialize a file or device Open an existing file or device Close a file or device Backspace one logical record Check for end of file
63 64	3F 40	@LOC @LOF	Calculate the current logical record number Calculate the EOF logical record
			number
65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83	41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 50 51 52 53	@PEOF @POSN @READ @READ @READ @RWRIT @SEEKSC @SKIP @VER @WEOF @WEOF @WHOF @UOAD @RUN @FSPEC @FEXT @FNAME @GTDCT @GTDCB @GTMOD	Position to the end of file Position a file to a logical record Read a record from a file Rewind a file to its beginning Reread the current sector Rewrite the current sector Seek a specified cylinder and sector Skip the next record Write a record to a file and verify Write and of file Write a record to a file Load a program file Load and execute a program file Fetch a file or device specification Set up a default file extension Fetch filename/extension from directory Get Drive Code Table address Find specified or first free DCB Find specified memory module address Reserved for future use
84 85 86	55	@RDSSC	Reserved for future use Read a system sector Reserved for future use
87 88 89	57 58	@DIRRD @DIRWR	Read directory record Write directory record Reserved for future use
90 91	5A 5B	@MUL8 @MUL16	Multiply 8-bit unsigned integers Multiply 16-bit by 8-bit unsigned integers
92 93 94	5D 5E	@DIV8 @DIV16	Reserved for future use Divide 8-bit unsigned integers Divide 16-bit by 8-bit unsigned integers
95 96	60	@DECHEX	Reserved for future use Convert decimal ASCII to 16-bit binary value
97	61	@HEXDEC	Convert a number in HL to decimal

ASCII

Dec	Hex	Label	Function
98	62	@HEX8	Convert a 1-byte number to hex ASCII
99	63	@HEX16	Convert a 2-byte number to hex ASCII
100	64	@HIGH\$	Obtain or set the highest and lowest unused RAM addresses
101	65	@FLAGS	Point IY to the system flag table
102	66	@BANK	Check, set, or reset a 32K bank of memory
103	67	@BREAK	Set user or system break vector
104 105-127	68	@SOUND	Generate sound (tone and duration) Reserved for future use.

Alphabetical List of SVCs

Following is an alphabetical list of the SVC labels and numbers:

Label	Dec	Hex
@ABORT	21	15
@ADTSK	29	1D
@BANK	102	66
@BKSP	61 103	3D 67
@BREAK @CHNIO	103 20	14
@CKDRV	33	21
@CKEOF	62	3E
@CKTSK	28	1C
@CLOSE	60 24	3C 18
@CMNDI @CMNDR	2 4 25	19
@CTL	5	5
@DATE	18	12
@DCINIT	42	2A
@DCRES	43 40	2B 28
@DCSTAT @DEBUG	40 27	20 1B
@DECHEX	96	60
@DIRRD	87	57
@DIRWR	88	58
@DIV46	93 94	5D 5E
@DIV16 @DODIR	34	22
@DSP	2	2
@DSPLY	10	ØA
@ERROR	26	1A
@EXIT @FEXT	22 79	16 4F
@FLAGS	79 101	65
@FNAME	80	50
@FSPEC	78	4E
@GET	3	3
@GTDCB @GTDCT	82 81	52 51
@GTMOD	83	53
@HDFMT	52	34
@HEXDEC	97	61
@HEX8 @HEX16	98 99	62 63
@HIGH\$	100	64
@INIT	58	3A
@IPL	Ø	0
@KBD	8	8
@KEY @KEYIN	1 9	1 9
@KLTSK	32	20
@LOAD	76	4C
@roc	63	3F
@LOF	64 11	40 0B
@LOGER @LOGOT	11 12	0C
@MSG	13	ØD.

Label	Dec	Hex
@MUL8	90	5A
@MUL16	91	5B
@OPEN	59	3B
@PARAM	17	11
@PAUSE	16	10
@PEOF @POSN	65 66	41
@POSN @PRINT	14	42 ØE
@PRT	6	۳ <u>ــ</u> 6
@PUT	4	4
@RAMDIR	35	23
@RDHDR	48	30
@RDSEC	49	31
@RDSSC	85	55
@RDTRK	51	33
@READ	67	43
@REMOV @RENAM	57 56	39
@REW	56 68	38 44
@RMTSK	30	1E
@RPTSK	31	1F
@RREAD	69	45
@RSLCT	47	2F
@RSTOR	44	2C
@RUN	77	4D
@RWRIT	70	46
@SEEK	46	2E
@SEEKSC	71	47
@SKIP @SLCT	72 41	48 29
@SOUND	104	68
@STEPI	45	2D
@TIME	19	13
@VDCTL	15	ØF
@VER	73	49
@VRSEC	50	32
@WEOF	74	4A
@WHERE	7	7
@WRITE	75 50	4B
@WRSEC @WRSSC	53 54	35
@WRTRK	54 55	36 37
@ **ITITIN	55	3/

Sample Programs

The following sample programs use many of the supervisor calls described in this manual. These programs are not meant to be examples of the most efficient programming, but are designed to illustrate as many supervisor calls as possible.

Sample Program A

```
Ln #
                  Source Line
00001
                  This program asks the user whether to run a program
ØØØØ2
                  or debug it and executes the SVCs required to perform
øøøø3
                  the chosen action.
         ;
ØØØØ4
øøøø5
                  PSECT
                           5ØØØH
                                             ;The program begins at x'5000'
øøøø7
øøøø8
                  Define the equates for the SVCs that will be used.
øøøø9
øøø1ø
                           27
         @DEBUG: EQU
                                             ;Enter the debugger
ØØØ11
         @DSPLY: EQU
                           10
                                             ;Display a message
ØØØ12
         @FSPEC: EQU
                           78
                                             ; Verify a filespec or devspec and
øøø13
                                             ; load it into a File Control Block
øøø14
                                             ;Get a character from the keyboard ;Load a program into memory
         @KEY:
                  EQU
ØØØ15
         @LOAD:
                  EQU
                           76
øøø16
         @RUN:
                           77
                  EOU
                                             ;Execute a program
øøø17
ØØØ18
         MESS1:
                  DEFM
                           'Do you wish to RUN this Program or DEBUG it ?'
ØØØ19
                  DEFR
                                             ;This moves the cursor to the next line
øøø2ø
                           'Press <ENTER> to RUN or <BREAK> to DEBUG'
                  DEFM
øøø21
                  DEFB
                                             ;Terminate the message string
ØØØ22
ØØØ23
                           'DIREX/CMD'
         PROGRM: DEFM
                                             ;Sample program to debug or execute
ØØØ24
                                             ;Terminate the filespec
                  DEFB
                           ØDH
ØØØ25
øøø26
         FCB1:
                  DEFS
                           32
                                             ;File Control Block for the program
ØØØ27
                  Get the File Control Block for the program 'DIREX/CMD'.
øøø28
ØØØ29
øøø3ø
         START:
                 LD
                           HL, PROGRM
                                             ;Point at the filespec we want to
ØØØ31
                                             ;execute or load into memory
ØØØ32
                  LD
                           DE.FCB1
                                             ;Point at the File Control Block
ØØØ33
                  LD
                           A,@FSPEC
                                             ; Perform a validity check on the filespec
ØØØ34
                                             ;and copy the filespec into the FCB. ;Call the @FSPEC svc
ØØØ35
                  RST
                           28H
99936
ØØØ37
                  LD
                           HL, MESS1
                                             ;Point at our prompting message ;and print it on the display
ØØØ38
                  LD
                           A.@DSPLY
ØØØ39
                  RST
                           28H
                                             ;Call the @DSPLY svc
øøø4ø
ØØØ41
                  LD
                           A,@KEY
                                             ;Get the reply from the keyboard
00042
                  RST
                           28H
                                             ;Call the @KEY svc
ØØØ43
ØØØ44
                 CP
                           MDH
                                             ; Was the character an <ENTER>?
                                             ; If Z was set, then run the program
ØØØ45
                 JR
                           Z, RUNIT
ØØØ46
ØØØ47
                  If it wasn't an <ENTER>, then we assume it was a <BREAK> and
ØØØ48
                  load the program and enter the debugger.
ØØØ49
øøø5ø
                          DE.FCB1
                                             ;Point at the File Control Block
                  T.D
                                             ; and have this program loaded into memory
ØØØ51
                  LD
                           A.@LOAD
00052
                 RST
                           28H
                                             ;Call the @LOAD svc
ØØØ53
ØØØ54
                  Note that this program must not be overwritten by the program
         ;
ØØØ55
                 we are loading. In this example, it is known that the program we are loading starts at x'3000' and ends below x'5000'.
         :
ØØØ56
         ;
øøø57
ØØØ58
                  LD
                           A,@DEBUG
                                             ; Now invoke the system debugger, DEBUG
                                             ;Call the @DEBUG svc
ØØØ59
                 RST
                           28H
øøø6ø
                                             ; Note that @DEBUG does not return
øøø61
ØØØ62
                 Execute the program
ØØØ63
ØØØ64
        RUNIT:
                 LD
                          DE, FCB1
                                             ;Point at the File Control Block
ØØØ65
                                             ;Tell TRSDOS to load and execute the
                 LD
                          A, @RUN
ØØØ66
                                             ;program
ØØØ67
                 RST
                          28H
                                             ;Call the @RUN svc
```

Sample Program A, continued

ØØØ68		;Note that @RUN returns only if it can't
øøø69		;find the program
ggg7g		
ØØØ71	;	Note that the program that is loaded by the @RUN svc must not
ØØØ72	;	overwrite the File Control Block in this program. In this case,
øøø73	;	it is known that the program we are executing starts at x'3ØØØ'
øøø74	;	and ends below the starting point of this program, x'5000.
øøø75		
ØØØ76		END START

Sample Program B

```
øøøø1
        ;This program accepts numbers from the keyboard
øøøø2
         ; and uses them to demonstrate the
øøøø3
         ;arithmetic and numeric conversion SVCs.
øøøø4
         ;It also uses the sound function to produce a tone at the
øøøø5
ØØØØ6
         ; beginning of the program.
ØØØØ7
                          3000H
øøøø8
                 PSECT
øøø1ø
øøø11
                 These are the SVCs used in this program.
øøø12
ØØØ13
         @DECHEX: EQU
                          96
                                            ;Convert decimal ASCII to binary
ØØØ14
         @DIV8: EQU
                          93
                                            ;Perform 8-bit division
         @DIV16: EQU
ØØØ15
                          94
                                            :Perform 16-bit division
                          2
                                            ;Display a character
øøø16
         @DSP:
                 EQU
ØØØ17
         @DSPLY: EQU
                          1Ø
                                           ;Display a message
                                            ;Return to TRSDOS Ready or the caller ;Convert an 8-bit value to hex ASCII
øøø18
         @EXIT:
                 EQU
                          22
                          98
øøø19
         @HEX8:
                 EQU
ØØØ2Ø
         @HEX16: EQU
                          99
                                           ;Convert a 16-bit value to hex ASCII
         @HEXDEC: EQU
                          97
                                           ;Convert a binary value to Decimal ASCII ;Read a character from *KI
00021
                          1
øøø22
         OKEY:
                 EOU
                                           ;Accept an input line from *KI
ØØØ23
         @KEYIN: EQU
                          9
ØØØ24
         @MUL8:
                 EQU
                          9Ø
                                            ;Perform 8-bit multiplication
                                            ;Perform 16-bit multiplication
                          91
         @MUL16: EQU
ØØØ25
                          104
                                            ;Produce a tone
ØØØ26
         @SOUND: EQU
ØØØ27
ØØØ28
                 Other equates.
ØØØ29
øøø3ø
        NUM5:
                  EOU
ØØØ31
                          4
        NUM4:
                 EOU
ØØØ32
        NUM3:
                  EOU
                          3
ØØØ33
        NUM2:
                  EQU
                          2
ØØØ34
        NUM1:
                  EOU
                          8ØH
                                            ;Character code for <BREAK> key
ØØØ35
        BRK:
                  EQU
ØØØ36
        ccc:
                  EQU
                          ØDH
                                            ;Next line position
ØØØ37
øøø38
         ; Perform a subroutine 2 times to display prompting messages, key in
ØØØ39
00040
         ; and display divisor and dividend, convert those numbers to
         ; binary for the divide, and position the cursor.
00041
ØØØ42
00043
         START: LD
                          B,5AH
                                            ; Make the longest, highest tone
                          A,@SOUND
00044
                  LD
                                           :Make the noise
ØØØ45
                  RST
                          28H
00046
                                           ;Perform keyin subroutine for dividend
                 CALL
                          KEYIN
                 LD
                          A,C
ØØØ47
ØØØ48
                  LD
                          (DIVD1),A
                                            ;Store the dividend in memory
                          HL.MESS9
                                            ;Address of hex message
00049
                  LD
                                            Display hex message; Get the divisor into C for conversion
                  CALL
                          DSPLAY
ØØØ5Ø
øøø51
                  LD
                          A, (DIVD1)
ØØØ52
                  LD
                          C,A
                                            ;from binary to hex
                                            ;Convert the number to hex
;Perform subroutine for divisor
                          HEX8
ØØØ53
                  CALL
ØØØ54
                  CALL
                          KEYIN
ØØØ55
                  LD
                          A,C
                          (DIVR1),A
                                            ;Store the divisor in memory
ØØØ56
                  I.D
ØØØ57
         ; Now we are ready to perform the divide on the numbers entered.
ØØØ58
ØØØ59
                                            ;Put the divisor back for the @DIV8 SVC
                          C,A
ØØØ6Ø
                  T.D
                                            ;Get the dividend into E
                          A, (DIVD1)
ØØØ61
                  LD
                                            ;for the @DIV8 SVC
ØØØ62
                  LD
                          E.A
                                            ;Call the @DIV8 SVC
                          A,@DIV8
øøø63
                  LD
ØØØ64
                  RST
                          28H
ØØØ65
         ; Now display the answer and the remainder in decimal.
ØØØ66
øøø67
ØØØ68
                  LD
                          (ANS1),A
                                           ;Store the answer in memory
```

```
00069
                  T.D
                                              ;Get the remainder
99979
                           (REM1),A
                  LD
                                              ;Store the remainder in memory
ØØØ71
                  LD
                           HL, MESS3
                                              ;Load address of answer message
00072
                  CALL
                           DSPLAY
                                             ;Display the message
                           A, (ANS1)
øøø73
                                              ;Get the answer into L for conversion
                  LD
øøø74
                  LD
                           L,A
                                             ;Number to convert
;Put a Ø in the MSB
ØØØ75
                  LD
                           H,Ø
00076
                           HEXDEC
                                              ;Perform subroutine to display decimal value
                  CALL
ØØØ77
                  LD
                           HL, MESS 4
                                              ; Address of remainder message
                                             ;Display remainder message
00078
                  CALL
                           DSPLAY
00079
                  LD
                           A, (REM1)
                                              ;Put remainder in A for hex conversion
øøø8ø
                  LD
                           L,A
                                              ;Number to convert
00081
                  LD
                           H.Ø
                                              ;Put Ø in the MSB
ØØØ82
                  CALL
                           HEXDEC
                                              ;Display decimal value
MMMR3
ØØØ84
        :Now divide with a 16-bit dividend.
ØØØ85
                           HL, MESS6
                                              ; Address of 2nd dividend message
ØØØ86
                  T.D
ØØØ87
                  CALL
                           DSPLAY
                                              ;Display next message
                                              ; Key in up to 5 digits
ØØØ88
                  LD
                           A, @KEYIN
øøø89
                  LD
                           HL,BUF6
                                              :Store the number
ggg9g
                  LD
                           B,NUM5
                                              ;Maximum length of number
øøø91
                  LD
                           C,Ø
ØØØ92
                  RST
                           28H
00093
                           A,@DECHEX
                  LD
                                              ;Convert the number to binary
ØØØ94
                  RST
                           28H
ØØØ95
                  LD
                           (DIVD2),BC
                                              :Store the dividend
                  LD
                           HL, MESS9
                                              ;Address of hex message
ØØØ96
øøø97
                  CALL
                           DSPLAY
                                              ;Display hex message
                                              ;Put dividend into DE for conversion ;Convert the number from binary to hex
øøø98
                  LD
                           DE, (DIVD2)
                           HEX16
ØØØ99
                  CALL.
øø1øø
                                              ;Key in divisor
;Put the divisor into A
                  CALL
                           KEYIN
ØØ1Ø1
                  LD
                           A,C
                           (DIVR1),A
                                              ;Store the divisor in memory
00102
                  LD
                           HL, MESS3
ØØ1Ø3
                  T.D
                                              ;Address of answer message
ØØ1Ø4
                  CALL
                           DSPLAY
                                             ;Display the message
;Put dividend into HL
                  LD
                           HL, (DIVD2)
ØØ1Ø5
                           A, (DIVR1)
991 96
                  T.D
                                              ;Get divisor into C
ØØ1Ø7
                  LD
                           C,A
øø1ø8
                  T.D
                           A,@DIV16
                  RST
                           28H
ØØ1Ø9
                           (REM1),A
                                              ;Store the remainder
øø11ø
                  LD
ØØ111
                  LD
                           (ANS2),HL
                                              ; Put the answer into HL
                                              ;Display answer in decimal ;Address of remainder message
ØØ112
                  CALL
                           HEXDEC
                           HL, MESS 4
00113
                  T.D
ØØ114
                  CALL
                           DSPLAY
                                              ;Display remainder message
                  LD
                           A, (REM1)
ØØ115
                                              :Get the remainder
ØØ116
                  LD
                                              ;into L
                           L,A
                                              ;Put a Ø in MSB
                           H,Ø
ØØ117
                  LD
ØØ118
                  CALL
                           HEXDEC
                                              ;Convert the remainder to decimal
ØØ119
øø12ø
         ; Now try some multiplication of 8 bits.
ØØ121
ØØ122
                           HL.MESS8
                                              ; Address of MUL8 message
ØØ123
                  CALL.
                           DSPLAY
                                              ;Display first multiplicand message
                           A, @KEYIN
ØØ124
                  LD
                                              ;Key in a 2-digit number
ØØ125
                           HL, BUF2
                                              ;Put it here
                  LD
ØØ126
                  LD
                           B, NUM2
                                              :Maximum number of characters
ØØ127
                  T.D
                           C,Ø
ØØ128
                  RST
                           28H
                           A, @DECHEX
                                              :Convert the number to binary for math
ØØ129
                  T.D
00130
                  RST
                           28H
ØØ131
                  LD
                           (MCAND1),BC
                                              ;Store the multiplicand
                  LD
                           HL, MESS1Ø
                                              ;Address of MUL8 multiplier message
ØØ132
                  CALL
                           DSPLAY
                                              ;Display first multiplier message
00133
                                              ; Key in the multiplier ; Put it here
ØØ134
                  LD
                           A,@KEYIN
```

ØØ135

LD

HL, BUF2

```
ØØ136
                 LD
                          B,NUM1
                                            :Maximum number of characters
ØØ1.37
                 LD
                          C,Ø
ØØ138
                 RST
                          28H
                          A,@DECHEX
ØØ139
                                            ;Convert the multiplier to binary for math
                 T.D
ØØ14Ø
                 RST
                          28H
                          (MIER1),BC
ØØ141
                 LD
                                           ;Store multiplier in memory
ØØ142
                 LD
                          HL, MESS13
                                            ;Address of multiplier message
ØØ143
                 LD
                          A, @DSPLY
                                            ;Display multiplier message
ØØ144
                 RST
ØØ145
ØØ146
         ; Now multiply the two numbers just entered.
ØØ147
ØØ148
                 LD
                          A, (MCAND1)
                                           ;Get the multiplicand into C
ØØ149
                 LD
                          C,A
                          A, (MIER1)
ØØ15Ø
                 LD
                                           ;Get the multiplier into E
ØØ151
                 LD
                          E,A
                          A,@MUL8
ØØ152
                 T.D
ØØ153
                 RST
                          28H
ØØ154
                 LD
                          L,A
                                            ;Put the product into L
                                            ; Put Ø in the MSB
ØØ155
                          H.Ø
                 LD
ØØ156
                          HEXDEC
                                            ;Convert the product to decimal
                 CALL
ØØ157
ØØ158
         : Now multiply a 16-bit by an 8-bit.
ØØ159
øø16ø
                 LD
                          HL, MESS11
                                            ; Address of multiplicand message
                                            Display 2nd multiplicand message
ØØ161
                 CALL
                          DSPLAY
                          A, @KEYIN
                                            Enter larger multiplicand
ØØ162
                 LD
                                            ;Put it here
ØØ163
                 LD
                          HL, BUF5
ØØ164
                 LD
                          B,NUM4
                                            ; Maximum number of characters
                 ת.ד
ØØ165
                          c,ø
ØØ166
                 RST
                          28H
ØØ167
                 LD
                          A,@DECHEX
                                            ;Convert the number to binary for math
                 RST
ØØ168
                          28H
ØØ169
                 LD
                          (MCAND2),BC
                                            ;Store the multiplicand in memory
                          HL, MESS12
                                            :Address of multiplier message
ØØ17Ø
                 T.D
ØØ171
                 CALL
                          DSPLAY
                                            ;Display message
                                            ;Enter larger multiplier
ØØ172
                 T,D
                          A, @KEYIN
ØØ173
                 LD
                          HL, BUF3
                                            ;Put it here
ØØ174
                 LD
                          B,NUM2
                                            :Maximum number of characters
ØØ175
                 T.D
                          C,Ø
ØØ176
                 RST
                          28H
ØØ177
                 LD
                          A,@DECHEX
                                            ;Convert the number to binary for math
                 RST
ØØ178
                          28H
ØØ179
                 LD
                          (MIER1),BC
                                            ;Store the multiplier in memory
                                           ;Address of product message
øø18ø
                          HL, MESS13
                 LD
ØØ181
                 T.D
                          A,@DSPLY
                                           ;Display the message
ØØ182
                 RST
                          28H
ØØ183
                 LD
                          HL, (MCAND2)
                                            ;Put multiplicand into HL
ØØ184
                          A, (MIERI)
                                            ;Get the multiplier into C
                 LD
ØØ185
                 LD
                          C,A
ØØ186
                          A,@MUL16
                 LD
                                            ;Multiply the two numbers
ØØ187
                 RST
                          28H
ØØ188
                 LD
                          H,L
                                            ;Get the 2nd byte of the product into
ØØ189
                                            ;H for conversion
ØØ19Ø
                                            ;Get the LSB into L for conversion
                 T.D
                          L,A
                          DE, BUF5
ØØ191
                 LD
                                            ;Convert the high-order byte to decimal
ØØ192
                 LD
                          A,@HEXDEC
                                            ;for the display
ØØ193
                 RST
                          28H
ØØ194
                 T.D
                          A,CCC
                                            ;Tell the display when to stop
ØØ195
                 LD
                          (DE),A
ØØ196
                 LD
                          HL, BUF5
ØØ197
                 T.D
                          A,@DSPLY
                                           ;Display the product
ØØ198
                 RST
                          28H
ØØ199
                 LD
                          HL, MESS 14
                                           :Address of end message
                 LD
øø2øø
                          A.@DSPLY
                                           ;Display end message
ØØ2Ø1
                 RST
                          28#
ØØ2Ø2
                 LD
                          A, @KEY
                                            ; Allow the user to enter any character
                          28H
ØØ2Ø3
                 RST
                                            ;or hit <BREAK>
```

```
00204
                 CP
                                            ;Is it <BREAK>?
                          NZ, START
                                            ;Yes, go back to beginning
gg2g5
                 JΡ
ØØ2Ø6
                 LD
                          A,@EXIT
                                           ;No, exit the program
ØØ2Ø7
                 RST
                          28H
ØØ2Ø8
        ;These are the subroutines used by the calls to
ØØ2Ø9
        ; display a message, key in a 3-digit number, and convert it ; from decimal to binary.
ØØ21Ø
ØØ211
ØØ212
ØØ213
        KEYIN: LD
                          HL, MESS1
ØØ214
                 CALL
                          DSPLAY
                                            ;Display message
ØØ215
                 T.D
                          HL, BUF4
                                            ; Put the number here
ØØ216
                 LD
                          B,NUM3
                                            ;Maximum number of characters
ØØ217
                 LD
                          C,Ø
                          A, @KEYIN
ØØ218
                 T.D
                                            ; Key in a number
ØØ219
                 RST
                          28H
ØØ22Ø
                 LD
                          A,@DECHEX
                                            ;Convert the number to binary
                 RST
                          28H
ØØ221
ØØ222
                 RET
                                            ;Return to next sequential instruction
ØØ223
99224
        ;Display what was loaded into HL before the call.
ØØ225
ØØ226
        DSPLAY: LD
                          A.@DSPLY
                                       :@DISPLAY SVC
00227
                 RST
                          28H
ØØ228
                 DEC
                          НL
                                            ;Set HL back to blank byte
ØØ229
                 LD
                          B, (HL)
                                            ;Load B with the number of bytes
                          C, T
øø23ø
        DSPLYLP:LD
                                            ;Put a blank into C
ØØ231
                 LD
                                            ;Display the blank
ØØ232
                 RST
                          28H
                                            ;until the correct number
                                            of blanks have been displayed
ØØ233
                 DJNZ
                          DSPLYLP
                                            ;Return to next instruction
ØØ234
                 PPP
ØØ235
ØØ236
        :Convert 1 byte to hexadecimal.
ØØ237
                          A,@HEX8
ØØ238
        HEX8:
                 LD
                                            ;Convert 1 byte to hex ASCII
ØØ239
                          HL, BUF3
                                            ;Put the converted value here
                 LD
ØØ24Ø
                 RST
                          28H
ØØ241
                 LD
                          A,CCC
                                            ;Tell display when to stop
;Put CCC at end of buffer
ØØ242
                 LD
                          (HL),A
                          A, @DSPLY
ØØ243
                 LD
                                            ;Display the hex value
                          HL,BUF3
ØØ244
                 T.D
ØØ245
                 RST
                          284
ØØ246
                 RET
                                            ;Return to next instruction
ØØ247
        ;Convert 2 bytes to hexadecimal.
ØØ248
ØØ249
ØØ25Ø
        HEX16:
                 LD
                          A,@HEX16
                                            ;Convert a 2-byte number to hex ASCII
ØØ251
                 LD
                          HL,BUF6
                                            ;Put the converted value here
ØØ252
                 RST
                          28H
                                            ;CCC at end of buffer so display
00253
                 LD
                          A,CCC
ØØ254
                 LD
                          (HL),A
                                            ;knows when to stop
ØØ255
                 LD
                          A,@DSPLY
                                            ;Display the converted value
ØØ256
                 LD
                          HL,BUF6
                                            ;Address of converted value
ØØ257
                 RST
                          28H
ØØ258
                 RET
                                            ;Return to next instruction
ØØ259
ØØ26Ø
         ;Convert from binary to decimal and display decimal value.
ØØ261
ØØ262
        HEXDEC: LD
                          A.@HEXDEC
                                            ;Convert from binary to decimal
                                            :Put converted value here
00263
                 LD
                          DE.BUF5
                 RST
                          28H
00264
ØØ265
                 LD
                          A,CCC
                                            ;CCC at end of buffer so display
ØØ266
                 LD
                          (DE),A
                                            :knows when to stop
                 LD
                          A, @DSPLY
ØØ267
                                            ;Display the hex value
ØØ268
                 LD
                          AL, BUF5
                                            ;It's here
ØØ269
                  RST
                          28H
ØØ27Ø
                  RET
                                            ;Return to next instruction
ØØ271
```

```
ØØ272
         ;These are the storage declarations.
ØØ273
ØØ274
        BUF6:
                 DEES
ØØ275
        BUF5
                 DEFS
                         5
ØØ276
        BUF4:
                 DEFS
                         4
ØØ277
        BUF3:
                 DEES
                         3
ØØ278
        BUF2:
                 DEFS
                         2
ØØ279
        DIVR1:
                 DEFB
                         Ø
ØØ28Ø
        DIVD1:
                 DEFB
                         ø
ØØ281
                         Ø
        ANS1:
                 DEFR
ØØ282
        REM1:
                 DEFB
                         Ø
ØØ283
        MCAND1: DEFB
                         Ø
ØØ284
        MIERI:
                 DEFR
                         Ø
ØØ285
        MCAND2: DEFW
                         Ø
ØØ286
        DIVD2:
                DEFW
                         Ø
ØØ287
        ANS2:
                 DEFW
ØØ288
ØØ289
        ;Below are messages and prompting text used in the program.
ØØ29Ø
ØØ291
                                          ; Number of blanks to print after message 1
ØØ292
        MESS1:
                DEFM
                         'Enter a number (1-255).
ØØ293
                 DEFB
                         3
                                          ;Message-terminating character
ØØ294
                                          ; Number of blanks to print after message 3
                 DEFB
                         21
ØØ295
        MESS3:
                 DEFM
                         'The answer is'
ØØ296
                         3
                 DEFR
                                          ;Terminating character
ØØ297
                 DEFB
                         18
                                          ;Blanks after message
ØØ298
        MESS4:
                DEFM
                         'The remainder is'
ØØ299
                 DEFB
                         3
                                          ;Terminating character
ØØ3ØØ
                 DEFR
                         6
                                           ;Blanks after message
ØØ3Ø1
        MESS6:
                 DEFM
                         'Enter a number (4369-65535).'
ØØ3Ø2
                 DEFB
                         3
                                          ;Terminating character
ØØ3Ø3
                         15
                 DEFR
                                          ;Blanks after message
ØØ3Ø4
        MESS8:
                 DEFM
                         'Enter a number (1-28).'
ØØ3Ø5
                 DEFB
                         3
                                          ;Terminating character
ØØ3Ø6
                 DEFB
                         16
                                          ;Blanks after message
ØØ3Ø7
        MESS9:
                 DEFM
                         'In hex ASCII, that is'
ØØ3Ø8
                 DEFB
                         3
                                          ;Terminating character
ØØ3Ø9
                         17
                 DEFB
                                          ;Blanks after message
ØØ31Ø
        MESS1Ø: DEFM
                         'Enter a number (1-9).'
ØØ311
                 DEFB
                         3
                                          ;Terminating character
ØØ312
                 DEFB
                         11
                                          ;Blanks after message
        MESS11: DEFM
ØØ313
                         'Enter a number (1-4100).'
ØØ314
                 DEFB
                         3
                                          ;Terminating character
ØØ315
                 DEFB
                         15
                                          ;Blanks after message
ØØ316
        MESS12: DEFM
                         'Enter a number (1-15).'
ØØ317
                DEFB
                                          ;Terminating character
ØØ318
        MESS13: DEFM
                         'The product of those 2 numbers is
ØØ319
                DEFB
                                          ;Terminating character
        MESS14: DEFM
ØØ32Ø
                         'Press <BREAK> to end or any other key to continue.'
ØØ321
                DEFB
                                          ;Terminating character
ØØ322
ØØ323
                END
                         START
```

Sample Program C

```
Ln #
                 Source! Line -
gggg1
                 This program prompts for two filenames, opens the first
                 file, and creates the second. Then the data in the first file is copied to the second file. While the Copy progresses,
øøøø2
aaaa3
00004
                 the current record number is displayed in parentheses.
øøøø5
BBBB6
                 PSECT
                          зøøøн
                                           ;This program starts at x'3000'
ØØØØ8
                 First, declare the equates for the SVCs we intend to use.
00009
                 This is not mandatory, but it makes the program easier to follow.
øøølø
ØØØ11
                                           ;Close a file or device
ØØØ12
        @CLOSE: EQU
                          87
                                           ;Read a directory record
øøø13
        @DIRRD: EQU
                                           ;Display character at cursor
00014
        @DSP:
                 EOU
                          2
                                           ;Display a message
                          1ø
ØØØ15
        @DSPLY: EOU
                          26
ØØØ16
        @ERROR: EQU
                                           ;Display an error message
        @EXIT: EQU
@FEXT: EQU
øøø17
                          22
                                           ;Exit and return to TRSDOS or the caller
øøø18
                          79
                                           ;Add a default file extension
                                           ;Fetch a filespec from the directory
                          8Ø
        @FNAME: EQU
øøø19
                                           ; Verify and load a filespec into the FCB
øgø2ø
         @FSPEC: EQU
                          78
        @HEXDEC: EOU
                                           ;Convert a binary value to decimal ASCII
00021
                          97
                                           Open an existing file or create a new file
                          58
øøø22
        @INIT: EQU
ggg23
         : daxs
                 EQU
                          3
                                           ;Accept a line of text from the *KI device
00024
         @KEYIN: EOU
                          63
                                           ;Return the current logical record number
        ALOC:
                 EQU
ØØØ25
                                           ;Open an existing file
ØØØ26
         @OPEN:
                 EQU
                          59
00027
         @READ:
                 EOU
                          67
                                           ; Read a record from an open file
         @REMOV: EQU
                                           ;Delete a file from disk
                          57
ØØØ28
                                           ;Write a record to disk.
                          73
                                                                       Does the same thing
øøø29
         @VER:
                 EQU
                                           ;as @WRITE (Svc 75), but it also makes sure
øøø3ø
ØØØ31
                                            ; the written data is readable.
øøø32
                 First, prompt for the source filespec using the @DSPLY svc.
ØØØ33
ØØØ34
                          HL, MESG1
                                           ;Get the first message
ØØØ35
        BEGIN: LD
ØØØ36
                 LD
                          A, @DSPLY
                                            ;Display a line on the screen
ØØØ37
                 RST
                          28H
                                            :Call the @DSPLY svc
00038
                 Now, read the filename from the keyboard using the @KEYIN svc.
øøø39
ØØØ4Ø
ØØØ41
                          HL, FILE1
                                           :Put the name of the 1st file here
                 LD
                                            ;Allow up to 24 characters
ØØØ42
                 LD
                          B,24
                                           ;A zero is required by the svc
ØØØ43
                 LD
                          C,Ø
00044
                          A, @KEYIN
                                           ;Get a filename from the user
                 T.D
                                           ;Call the @KEYIN svc
00045
                 RST
                          28H
                                           ;The user pressed <Break>
ØØØ46
                 JΡ
                          C,QUIT
                                           ;An Error occurred
ØØØ47
                 JP
                          NZ, ERR
ggg48
                                            ;Get the number of characters
ØØØ49
                 LD
                          A,B
                                           ;See if that value was zero
ØØØ5Ø
                 OR
                          Z,BEGIN
                                            ; Nothing was entered, ask again
øøø51
                 JR.
ØØØ52
                 The user has typed something, so it must be checked for validity
00053
                 using the @FSPEC svc.
øøø54
ØØØ55
                          HL, FILE1
                                            ;Point at the text the user entered
ØØØ56
00057
                 T.D
                          DE, FCBl
                                            ;Point at the File Control Block
                                            that is to be used for the source file.
ØØØ58
                                            ;The @FSPEC svc will make sure the filename;that is in buffer named "filel" is valid.
ØØØ59
                  LD
                          A.@FSPEC
øøø6ø
                                            ;If it is, it is copied into the File
ØØØ61
                                            ;Control Block (FCB) to be used by the @OPEN
øøø62
                                            ;or @INIT svc later on.
øøø63
                                            ;Call the @FSPEC svc
                  RST
                          28H
ØØØ64
                          Z,ASK2
                                            :The name for file 1 is ok, so skip this
ØØØ65
                  .TR
ØØØ66
                At this point the filename specified for file 1 has been found
øøø67
```

```
ØØØ68
                  to be in an invalid format. The following code will print the
ØØØ69
                  error message.
ØØØ7Ø
ØØØ71
                  T,D
                           HL, BADFIL
                                             ; Point at the bad filename message
ØØØ72
                  LD
                           A,@DSPLY
                                             ;Display it
ØØØ73
                  RST
                                             ;Call the @DSPLY svc
;Start over
                           28H
ØØØ74
                  JR
                           BEGIN
ØØØ75
ØØØ76
                  At this point, the source filename appears to be valid. The code below asks for the second filename and checks it for
         ;
ØØØ77
ØØØ78
                  validity also.
ØØØ79
ØØØ8Ø
         ASK2:
                  LD
                           HL, MESG2
                                             ;Prompt for the target filename
ØØØ81
                           A, @DSPLY
                  LD
                                             ;Print that on the screen
ØØØ82
                                             ;Call the @DSPLY svc
;Put the name of the 2nd file here
                  RST
                           28H
ØØØ83
                  LD
                           HL, FILE2
00084
                  LD
                           B,24
                                             ;Allow up to 24 characters
ØØØ85
                  LD
                           C,Ø
                                             ;A zero is required by the svc
ØØØ86
                           A, @KEYIN
                                             ;Get a filename from the user
                  LD
øøø87
                  RST
                           28H
                                             ;Call the @KEYIN svc
ØØØ88
                           C,QUIT
                  JΡ
                                             ;The user pressed <Break>
øøø89
                  JP
                           NZ, ERR
                                             ;An Error occurred
øøø9ø
ØØØ91
                  LD
                           A,B
                                             ;Get the number of characters
                                             ;See if that value was zero.
ØØØ92
                  OR
ØØØ93
                           Z,ASK2
                  JR
                                             ;Nothing was entered, ask again
ØØØ94
ØØØ95
                  The user has typed something, so it must be checked for validity
00096
                  using the @FSPEC svc.
øøø97
ØØØ98
                           HL, FILE2
                                             ;Point at the text the user entered
00099
                  LD
                           DE,FCB2
                                             ;Point at the File Control Block
øøløø
                  LD
                           A,@FSPEC
                                             ;Check the name for validity
ØØ1Ø1
                  RST
                           28H
                                             ;Call the @FSPEC svc
ØØ1Ø2
                                             The name for file 2 is ok, so skip this
                  JR
                           Z,F2OK
ØØ1Ø3
00104
                  The name for file 2 is invalid so print an error message
ØØ1Ø5
øølø6
                           HL, BADFIL
                  LD
                                             ;Point at the bad filename message
øø1ø7
                           A,@DSPLY
                  LD
                                             ;Display it
øø1ø8
                  RST
                           28H
                                             ;Call the @DSPLY svc
ØØ1Ø9
                  JR.
                           REGIN
                                             ;Start over
ØØ11Ø
ØØ111
                  Now we will attempt to add an extension to the target file
         :
                  if the user did not specify one. We use the extension that was specified on the source file. If it does
ØØ112
         ;
ØØ113
ØØ114
                  not have one, then we will not try to add one to the target file.
ØØ115
                           HL,FCBl+1
ØØ116
         F2OK:
                  LD
                                             ;Point at the source filename
ØØ117
                                             ;We start with the second character since
                                             the filename must be at least one character
ØØ118
ØØ119
         FDIV:
                  LD
                           A, (HL)
                                             ;Get a character from the filespec
ØØ12Ø
                  CP
                                             ; Is the character the extension prefix?
ØØ121
                  JR
                           Z.EXTN
                                             ; Yes, this will be our default extension
ØØ122
                  CP
                                             ; Have we reached the end of the filespec?
                           ØDH
ØØ123
                                             ;Yes, there is no extension so don't add one ;Test both terminators
                  JR
                           Z, NOEXT
ØØ124
                  CP
                           ØЗН
                           Z, NOEXT
ØØ125
                  JR
ØØ126
                  INC
                           HL
                                             ; Advance the pointer to the next character
                           FDIV
ØØ127
                  JR
                                             :Keep looking
ØØ128
ØØ129
         EXTN:
                  INC
                           HL
                                             ; Advance pointer to first byte of extension
ØØ13Ø
                  LD
                           DE,FCB2
                                            ;Point at FCB for the target file (file 2)
                           A,@FEXT
ØØ131
                  LD
                                             ; Add an extension if one is not present
ØØ132
                 RST
                           28H
                                             ;Call the @FEXT svc
ØØ133
ØØ134
                 Now we have two filenames. First we will open the source file
        7
                 to make sure it exists.
ØØ135
```

```
ØØ136
                                             ;Point at the File Control Block for filel
ต์ตี137
        NOEXT: LD
                          DE,FCB1
ØØ138
                  LD
                          HL, BUF1
                                             ;Point at the system buffer. This buffer
ØØ139
                                             ; is used by the system to block data that
ØØ14Ø
                                             ; is written to disk and de-block data that
                                             ; is read from disk when the Logical Record
ØØ141
                                            ;Length of the file is not 256. If it is
;256, then this buffer is not used.
;Use LRL 256 for now since we don't know
ØØ142
ØØ143
00144
                 T,D
                          B,Ø
ØØ145
                                            ; what to use yet.
ØØ146
                  LD
                          A, @OPEN
                                            Open the file
ØØ147
                                            ;Call the @OPEN svc
                  RST
                          28H
                                             ;The file opened and is LRL 256.
ØØ148
                  TR
                           Z,SIZ
ØØ149
                  CP
                           42
                                             ; Was the error a LRL Open Fault?
ØØ15Ø
                  JΡ
                          NZ, ERR
                                             ;No, perhaps the file does not exist.
00151
                  At this point, the file is open and we can now examine the
ØØ152
ØØ153
                  directory to find out what LRL it was created with so we can
00154
                 use that value to make the copy.
99155
ØØ156
        SIZ:
                 T.D
                          A, (FCB1+6)
                                             ;Get the byte in the FCB which contains
                                            the drive number the file is on Erase all other information in that byte
ØØ157
99158
                 AND
                                             ;Save that value here
99159
                  LD
                          C.A
ØØ16Ø
                 T.D
                          A. (FCB1+7)
                                            :This reads the Directory Entry Code (DEC)
                                            ;out of the FCB so we can use it
ØØ161
                                            ;Store the DEC here
ØØ162
                  LD
                           B,A
ØØ163
                  PUSH
                          BC
                                            ;Save that value for now
00164
                           A, @CLOSE
                                            ; We can close the source file for now
                  LD
                                            ;Call the @CLOSE svc
ØØ165
                  RST
                           28H
ØØ166
ØØ167
                  POP
                                            :Get the DEC value back off the stack
                           A,@DIRRD
                                            ; Read the directory record for that file
99168
                 T.D
ØØ169
                 RST
                           28H
                                            :Call the @DIRRD svc
00170
99171
                 T.D
                          TX.HL
                                            ;Put the pointer to the directory record
                                             ;here and read the DIR+4 entry which
ØØ172
                 LD
                          A, (IX+4)
                                            contains the LRL of the source file.
ØØ173
99174
                          (LRL),A
                                             ;Save that value
ØØ175
ØØ176
                 Before we go any further, we should check to see if the target file
                 already exists.
ØØ177
ØØ178
                  T.D
                           DE,COPY
                                            ;First, make a copy of the FCB
ØØ179
ØØ18Ø
                  T.D
                           HL,FCB2
                                             ;in case we have to delete a file
                                             :Move the entire block
ØØ181
                 LD
                           BC,32
                 LDIR
99182
ØØ183
ØØ184
                  T.D
                          DE, FCB2
                                            :Point at the target File Control Block
                                             ;Use this as the buffer for now ;Use LRL 256 for now
ØØ185
                  LD
                           HL,BUF2
ØØ186
                  LD
                           B,Ø
ØØ187
                           A, @OPEN
                                             ;Open it and see if it is there
                  T.D
                                             ;Call the @OPEN svc
;The file already exists, better ask
;Was the error a LRL mismatch?
ØØ188
                  RST
                           28H
ØØ189
                  JR
                           Z, EXISTS
ØØ19Ø
                  CP
                           42
ØØ191
                           NZ, NOFILE
                                             ;No, so the file does not exist.
ØØ192
ØØ193
        EXISTS: LD
                           HL, FEXST
                                             ;Point at a prompt asking if it is ok
ØØ194
                                             ;to erase the file that already exists
                                             ;Print that message
00195
                  LD
                           A, @DSPLY
ØØ196
                                             ;Call the @DSPLY svc
                  RST
                           28H
ØØ197
ØØ198
                           A.@KBD
                                             ;Wait for the user to type Y or N
        WAIT:
                  LD
ØØ199
                  RST
                           28H
                                             ;Call the @KBD svc
                           NZ,WAIT
                                             ;Loop until something is typed
ØØ2ØØ
                  TR
00201
                           171
                                             ;Was a 'Y' typed?
ØØ2Ø2
                  CP
ØØ2Ø3
                  JR
                           Z, KILLIT
                                            ;Then kill the file
```

```
;Check for lowercase too
ØØ2Ø4
                 CP
                          Z, KILLIT
ØØ2Ø5
                 JR
                          'N'
                 CP
                                           :Do they want to leave the file alone?
ØØ2Ø6
                                           ; No, just close the file and quit
ØØ2Ø7
                 JR
                          Z,SHUT
                                           ; Was it a lowercase 'N'?
00208
                 CP
                          'n'
                          NZ, WAIT
                                           :No. loop until we see something we like
øø2ø9
                 JR.
ØØ21Ø
ØØ211
        SHUT:
                 LD
                          DE,FCB2
                                           ;Close the target file
                 LD
                          A, @CLOSE
00212
                                           ;Call the @CLOSE svc
ØØ213
                 RST
                          28H
ØØ214
                 JΡ
                          QUIT
                                           ;Exit to TRSDOS
ØØ215
                 At this point, we have been given the OK to delete the file
ØØ216
                 that has the same name as the target file.
ØØ217
ØØ218
                                            ;First move display to a new line
00219
        KTI.I.TT: I.D
                          C,ØDH
                          A,@DSP
                                            ;Display an <Enter>
ØØ22Ø
                 T.D
                                            ;Call the @DSP svc
ØØ221
                 RST
                          28H
00222
                          DE, FCB2
                                            ;Point at the target file's FCB
ØØ223
                 T.D
ØØ224
                 LD
                          A, @REMOV
                                            ;Delete the file from disk
ØØ225
                 RST
                          28H
                                            ;Call the @REMOV svc. (This is the same
ØØ226
                                            ;as the @KILL call on other TRSDOS systems.)
ØØ227
                 JP
                          NZ, ERR
                                           ;An error occurred, print it and quit;Note that after a @REMOV succeeds,
ØØ228
ØØ229
                                            ;the filespec is removed from the FCB.
ØØ23Ø
                                            ;So we have to keep a copy around
ØØ231
                                            ;in case we need it.
                          HL, COPY
                                            ;Get the copy
;Put it here
00232
                 LD
ØØ233
                 LD
                          DE, FCB2
                                            ;Move up to 32 bytes
00234
                 LD
                          BC,32
                                            ;Copy the FCB so we can continue
ØØ235
                 LDIR
ØØ236
ØØ237
                 Now we know what Logical Record Length (LRL) to use in the
                 copy, so we can open the source file and create the target file
ØØ238
ØØ239
                 with the correct record lengths.
ØØ24Ø
ØØ241
        NOFILE: LD
                          HL, FCB1
                                            ;Point at the filename in the FCB
                                            ;Print that name
ØØ242
                 LD
                          A.@DSPLY
                 RST
                                            ;Call the @DSPLY svc
ØØ243
                          28H
ØØ244
                 LD
                          HL, SPACES
                                            ;Point at some spaces
00245
                 LD
                          A,@DSPLY
                                           ;Space over a few places on the screen ;Call the @DSPLY svc
ØØ246
                 RST
                          28H
ØØ247
                          DE,FCB1
ØØ248
                                            ;Point at File Control Block for source file
                 LD
                          HL, BUF1
ØØ249
                 LD
                                            :Put data in this
ØØ25Ø
                          A, (LRL)
                                            ;Read the Logical Record Length
                 LD
                                           ;Load the Logical Record Length
00251
                 LD
                          B.A
                          A,@OPEN
                                            ;Open the source file
ØØ252
                 LD
ØØ253
                 RST
                          28H
                                            ;Call the @OPEN svc
                          NZ, ERR
                                           ;Open failed
ØØ254
                 JP
ØØ255
ØØ256
                 LD
                          HL, ARROW
                                            ;Point at the arrow text
ØØ257
                 LD
                          A, @DSPLY
                                           ;Print that to show the direction of copy
                 RST
                          2 RH
                                            :Call the @DSPLY svc
ØØ258
ØØ259
ØØ26Ø
                          DE,FCB2
                                            ; Point at File Control Block for target file
                 LD
ØØ261
                 LD
                          A, (LRL)
                                            ;Get the Logical Record Length
                                            ; Is the LRL 256?
ØØ262
                 CP
                          Z,LRL256
                                            Then we do something special
ØØ263
                 JR
                          HL,BUF2
                                            :Use a different buffer for target file
ØØ264
                 LD
                          LRLCOM
                                            ;Jump to common code
ØØ265
                 JR
ØØ266
        LRL256: LD
                          HL, BUF1
                                            ; We use the same buffer when the LRL is 256
                                            ;since there is no need to block and de-block
ØØ267
                                            ;the data.
ØØ268
        LRLCOM: LD
                                           ;Load the Logical Record Length
ØØ269
                          B,A
ØØ27Ø
                 LD
                          A,@INIT
                                           ;Open the target file
```

```
28H
                                            ;Call the @INIT svc
ØØ271
                 RST
99272
                          NZ, ERR
                                            :Init failed
                 JR
ØØ273
ØØ274
                          DE.FILE2
                                            ;We are going to get the filename for
                 T.D
ØØ275
                                            ; the target file from the system
                                            ;instead of using the one we have. The ;reason for this is that the system will
ØØ276
ØØ277
ØØ278
                                            ;append the drive number to the filename
                                            ; if one was not specified.
ØØ279
                           A, (FCB2+7)
                                            ;Get the Directory Entry Code for the file
ØØ28Ø
                 LD
ØØ281
                 LD
                           B,A
                                            ; Put the DEC here
ØØ282
                 LD
                           A, (FCB2+6)
                                            ;Get the Drive Number from the FCB
                                            ;Lose all data except the drive number
ØØ283
                 AND
                           7
ØØ284
                 LD
                          C,A
                                            ;Store drive number here
ØØ285
                           A,@FNAME
                                            ; Have the system produce a filespec
                 LD
00286
                 RST
                           28H
                                            ;Call the @FNAME svc
                                            ; Now point at the filespec produced
ØØ287
                 LD
                           HL, FILE2
ØØ288
                 LD
                           A,@DSPLY
                                            ;and print it out
                                            ;Call the @DSPLY svc
00289
                 RST
                           28H
øø29ø
ØØ291
                 LD
                           HL, SPACES
                                            ;Space over a few more places
ØØ292
                                            ;so the display will look neat
                 LD
                           A.@DSPLY
                                            ;Call the @DSPLY svc
ØØ293
                 RST
                           28H
ØØ294
                 At this point, both files are open and ready to be used.
ØØ295
                 The following code reads a record from the source file and writes it to the target file. This is done until an
ØØ296
ØØ297
ØØ298
                 end of file is encountered.
         ï
ØØ299
                          DE,FCB1
        LOOP:
                                            ;Point at file 1 (source file)
gg3gg
                 LD
                                            ;Put data here
ØØ3Ø1
                          HL, BUFFER
                 LD
ØØ3Ø2
ØØ3Ø3
                          A, @READ
                                            Read a record from the source file Call the @READ svc
                 LD
                 RST
                          28H
ØØ3Ø4
                 JR
                          NZ, EOF
                                            ;Jump if the eof has been reached
                                            ;Point at file 2 (target file)
ØØ3Ø5
                 LD
                          DE, FCB2
ØØ3Ø6
øø3ø7
                 Before writing the record, display the record number, which
øø3ø8
                 is obtained from the @LOC svc.
        :
ØØ3Ø9
                          A,@LOC
gg31g
                 T.D
                                            ;Get the current record number
ØØ311
                 RST
                           28H
                                            ;Call the @LOC svc
ØØ312
                          BC.
ØØ313
                 PHSH
                                            ;Get the current record number
                                            ;and put it in register HL
ØØ314
                 POP
                          HL
                          DE,LOCMSG+1
                                            Store the result here.
                 T.D
ØØ315
ØØ316
                 LD
                          A, @HEXDEC
                                            ;Convert binary to ASCII in decimal format
ØØ317
                 RST
                                            ;Call the @HEXDEC svc
                          28H
ØØ318
                          A,' '
ØØ319
                 LD
                                            ;Get a blank
ØØ32Ø
                          HL, LOCMSG
                                            ;Look at the front of the buffer
                 LD
ØØ321
        EDIT:
                 CP
                                            ; Is the character a blank?
                          (HL)
ØØ322
                          NZ, NUMBR
                                            ; A number has been found
                 JR
ØØ323
                 INC
                          HL
                                            ; Advance the pointer
ØØ324
                 JR
                          EDIT
                                            ;Loop until we find a number
ØØ325
ØØ326
        NUMBR:
                 DEC
                                            ;Back up one position
                          A,'('
ØØ327
                                            ;Get the character we want to insert
                 LD
00328
                 LD
                           (HL),A
                                            ;Store that character.
                                            ;The buffer now contains
ØØ329
ØØ33Ø
                                            ; <none or more spaces> (record number)
ØØ331
                                            ;<7 left-cursor characters><etx>
ØØ332
                 LD
                          HL,LOCMSG
                                            ;Point at this text
ØØ333
                 LD
                          A, @DSPLY
                                            ;and display it on the screen
                                            ;Call the @DSPLY svc
ØØ334
                 RST
                          28H
ØØ335
ØØ336
                 Now write the record to the target file.
ØØ337
                                            ;Point at the FCB for the target file
ØØ338
                 T.D
                          DE.FCB2
```

```
;Point at the data read from file 1
                         HL, BUFFER
ØØ339
                 LD
                                           ;Write a record to the target file
                 LD
                          A,@VER
ØØ34Ø
                                           :The @VER does the same thing as the
ØØ341
                                           ;@WRITE svc, only it also checks the
ØØ342
00343
                                           ;data to make sure it is readable.
                 RST
                          28H
                                           ;Call the @VER svc
00344
                                           ;An error occurred on write; possibly ;the disk is full.
                          NZ, ERR
ØØ345
                 JR
ØØ346
                 JR
                          LOOP
                                           ;Loop until an error occurs.
ØØ347
ØØ348
                 This code checks the error to make sure it was an end of file
ØØ349
                 condition and, if so, closes the source & target files.
ØØ35Ø
ØØ351
                                           ; Was it an end of file encountered?
         EOF:
                 CP
ØØ352
ØØ353
                 JR
                          Z, EOFYES
                                           ;Yes, close the file
                                           ;Was it "Record number out of range"?
ØØ354
                 CP
                          29
                                           ; No, must be some other error
ØØ355
                 JR
                          NZ, ERR
ØØ356
                 It is possible to get Error 29 if the file being copied has
ØØ357
         ;
                 an EOF that is not a multiple of the file's LRL
ØØ358
         :
ØØ359
                                           ;Point at file 1 (source file)
ØØ36Ø
         EOFYES: LD
                          DE, FCB1
                 LD
                          A, @CLOSE
                                           ;Close the file
00361
                                           ;Call the @CLOSE svc
ØØ362
                 RST
                          28H
ØØ363
                 JR
                          NZ, ERR
                                           ;An error occurred, abort
ØØ364
                          DE, FCB2
                                           ;Point at file 2 (target file)
ØØ365
                 LD
ØØ366
                 LD
                          A, @CLOSE
                                           ;Close it also
                 RST
                          28H
                                           ;Call the @CLOSE svc
ØØ367
                                           ;An error occurred, abort
ØØ368
                 JR
                          NZ, ERR
ØØ369
                          HL,OK
                                           :Print a message saying the copy is done
ØØ37Ø
                 LD
ØØ371
                  LD
                          A,@DSPLY
                                           ;Call the @DSPLY svc
                  RST
                          288
ØØ372
ØØ373
                          A, @EXIT
                                           ;Exit to TRSDOS or the calling program
ØØ374
         QUIT:
                 T.D
ØØ375
                 RST
                          28 H
                                           ;Call the @EXIT svc
ØØ376
                  The @EXIT svc does not return.
ØØ377
ØØ378
                                            ;Turn on bit 6, which
ØØ379
         ERR:
                  OR
                          Ø4ØH
ØØ38Ø
                                            ; will cause the @ERROR svc to print
                                            the short error message. Bit 7
ØØ381
                                            ; is not set, which instructs the @ERROR
ØØ382
                                            ;to abort this program and return to
ØØ383
                                            :TRSDOS Ready.
ØØ384
                                            ;Put error code & flags in register C
ØØ385
                  LD
                          C,A
                                            ;Call the system error displayer
                          A,@ERROR
ØØ386
                  LD
                                            ;Call the @ERROR svc
                  RST
                          281
ØØ387
ØØ388
                  Because bit 7 is not set, the @ERROR svc will not return.
ØØ389
         ;
ØØ39Ø
                  Storage Declaration
ØØ391
ØØ392
                                            :ASCII Space char.for display formatting
         SPACES: DEFM
ØØ393
ØØ394
                  DEFR
                          3
                           '=>
                                            ;Arrow for display shows data direction
ØØ395
         ARROW:
                  DEFM
ØØ396
                  DEFB
                          3
                          10825
                                            :Advance cursor 10 spaces without erasing
 ØØ397
         OK:
                  DEFB
                                            ;Used to indicate the Copy is complete
                  DEFM
                           '[Ok]'
 ØØ398
                          ØDH
                                            ;Terminated with an <Enter>
                  DEFB
 ØØ399
                           'Copy Filespec >
 øø4øø
         MESG1:
                  DEFM
 00401
                  DEFB
                           3
                           'To Filespec >'
ØØ4Ø2
         MESG2:
                  DEFM
ØØ4Ø3
                  DEFB
00404
         FEXST:
                  DEFM
                           'Destination File Already Exists - Ok to Delete it (Y/N) ?'
ØØ4Ø5
                  DEFB
```

ØØ4Ø6 ØØ4Ø7	BADFIL:	DEFM DEFB	'Invalid Filenam	ne - Try Again'
ØØ4Ø8 ØØ4Ø9	LOCMSG:		12345)	;This will be used in building the LOC ;Display will appear as (d) to (ddddd).
ØØ41Ø		DEFB	7%24	;Backspace without erasing
ØØ411		DEFB	3	;Etx, used to get the @DSPLY svc to stop
ØØ412				
ØØ413	FILE1:	DEFS	32	;User Text Originally placed here
00414	FILE2:	DEFS	32	:Target Filename goes here
ØØ415	FCBl:	DEFS	32	;32 bytes for the File Control Block
ØØ416	FCB2:	DEFS	32	;32 bytes for the File Control Block
ØØ417	COPY:	DEFS	32	;An extra copy of the target FCB goes here
ØØ418	LRL:	DEFB	ø	;The Logical Record Length of the source
ØØ419				;file will be stored here
ØØ42Ø	BUF1:	DEFS	256	;System buffer for File 1
ØØ421	BUF2:	DEFS	256	;System buffer for File 2
ØØ422	BUFFER:	DEFS	256	;Data buffer for both files
ØØ423				
ØØ424		END	BEGIN	;"begin" is the starting address

Sample Program D

```
Ln #
                  Source Line
øøøø1
                  This program will read a sector from the disk in Drive \emptyset
         ;
                  and will write it to a disk in Drive 1. The disk in Drive 1 must be formatted, but should not have anything important on
00002
         ;
ØØØØ3
         ;
øøøø4
                       This program makes an assumption that the directory is
         ;
gggg5
                  located on cylinder 20 (x'14').
         ;
gggg6
ØØØØ7
                  PSECT
                           зøøøн
                                             ;This program begins at x'3ØØØ'.
øøøø9
øøøiø
                  Define the equates for the SVCs that will be used.
øøø11
                                             ;Abort and return to TRSDOS
ØØØ12
         @ABORT: EQU
                           21
øøø13
         @CKDRV: EQU
                                             ;Test to see if a drive is ready
                           33
ØØØ14
         @DCSTAT: EQU
                           40
                                             ; Verify that a drive is defined in the DCT
ØØØ15
         @ERROR: EQU
                           26
                                             ;Display an error message
øøø16
         @EXIT:
                           22
                                             ;Return to TRSDOS or the calling program
                 EQU
ØØØ17
                           49
         @RDSEC: EQU
                                             :Read a sector
         @RDSSC: EQU
øøø18
                           85
                                             ;Read a system sector
øøø19
         @WRSEC: EOU
                           53
                                             ;Write a sector
00020
         @WRSSC: EOU
                           54
                                             ;Write a system sector
ØØØ21
ØØØ22
                  Other Equates
ggg23
         SYSSEC: EQU
                           1400H
                                             ;The system sector is Cylinder 2\emptyset, Sector \emptyset
ØØØ24
ØØØ25
         USRSEC: EQU
                           ØØØØН
                                             ;The regular sector is Cylinder Ø, Sector Ø
ØØØ26
                  First, test the target drive and make sure it is defined.
ØØØ27
ØØØ28
00029
         START:
                  LD
                           C,1
                                             :Select Drive 1
                           A, @DCSTAT
                                             ; Ask if the drive is listed in the DCT ;Call the @DCSTAT svc
øøø3ø
                  T.D
øøø31
                  RST
                           28H
                                             ; If NZ, then the drive is not defined
00032
                  JR
                           NZ.ERROR
                                             ;and we will abort execution.
ggg33
ØØØ34
ØØØ35
                  Now, test and make sure the target drive contains a formatted
                  disk and is write-enabled.
øøø36
øøø37
ØØØ38
                  LD
                           C,1
                                             ;Select Drive 1
                           A,@CKDRV
ØØØ39
                                             :Test to see if the disk is formatted
                  LD
                                             ;and is write-enabled. Note that the
ØØØ4Ø
00041
                                             ;disk must be formatted by TRSDOS 6.x
                                             or by LDOS 5.1.x to be considered; "formatted" by this svc.
ØØØ42
ØØØ43
                                             ;Call the @CKDRV svc
ØØØ44
                  RST
                           28H
ØØØ45
                                             ;This will become the error number if the
                  T.D
                           A,8
ØØØ46
                                             ;drive was not ready. This is done
                                             ; because the @CKDRV svc does not return error
00047
                                             ; codes.
ØØØ48
                                             ;The drive is not ready
ØØØ49
                  JR
                           NZ, ERROR
øøø5ø
                  LD
                           A,15
                                             ;This will become the error number if the
ØØØ51
                                             drive is ready and is write-protected. As above, this is done because @CKDRV does
øøø52
ØØØ53
                                             ;not return error messages.
                                             ;The disk is formatted, but it is ;write-protected. In either case, abort.
ØØØ54
                  JR
                           C, ERROR
ØØØ55
ØØØ56
ØØØ57
                  Now that we know the target drive is ready, read a sector
         ï
                  from the source drive and write it to the target drive (Drive 1).
ØØØ58
ØØØ59
øøø6ø
                           C.Ø
                                             ;Select Drive Ø
                  LD
                                             ; Read the first sector on the disk,
00061
                  T.D
                           DE, USRSEC
                                             ;Cylinder Ø, Sector Ø.
ØØØ62
ØØØ63
                  LD
                           HL, BUFF
                                             ;Point to a buffer which will hold the sector
ØØØ64
                  LD
                           A, @RDSEC
                                             ;Read a non-system sector
øøø65
                  RST
                                             ;Call the @RDSEC svc
                           28H
ØØØ66
                  JR
                           NZ, ERROR
                                             ; If NZ, an error occurred, so abort
ØØØ67
```

```
øøø68
                  Now, write the sector to the target drive.
øøø69
ØØØ7Ø
                  LD
                           C,1
                                             ;Select Drive 1
øøø71
                  LD
                           DE,USRSEC
                                             ;Write the sector to Cylinder Ø, Sector Ø
ØØØ72
                                             ;on Drive 1
ØØØ73
                  LD
                           HL,BUFF
                                             ;Point to the buffer containing the sector
ØØØ74
                  LD
                           A, @WRSEC
                                             ;Write the sector to disk
øøø75
                  RST
                           28H
                                             ;Call the @WRSEC svc
                                             ; If NZ, an error occurred, so abort
ØØØ76
                  JR
                           NZ.ERROR
ØØØ77
øøø78
                  Now we will read a system sector from Drive Ø and write it on
                  drive 1. The difference between a system sector and a non-system
ØØØ79
                  sector is that the Data Address Marks (DAM) are different. These
øøøøø
øøø81
                  were written to the disk when it was formatted. TRSDOS 6.x uses
                  these as an extra check to make sure that a write of user data
ØØØ82
øøø83
                  does not accidentally get placed over a sector containing system data. All of the sectors in the directory cylinder are marked
ØØØ84
ØØØ85
                  as system sectors.
øøø86
ØØØ87
                           C,Ø
                                             ;Select Drive Ø
                  T.D
00088
                           DE, SYSSEC
                                             ;Read Cylinder 20, Sector Ø
                  LD
ØØØ89
                  LD
                           HL, BUFF
                                             ;Store the sector at this address
ggggg
                  T.D
                           A, @RDSSC
                                             ;Read a system sector
ØØØ91
                                             ;Call the @RDSSC svc
                  RST
                           28H
99992
                  τR
                           NZ, ERROR
                                             ;An error occurred, so abort
ØØØ93
ØØØ94
                  Now write the sector to the target drive as a system sector.
                  There is no requirement that a sector must be placed at the same cylinder and sector location as it was read from, but
ØØØ95
         ;
ØØØ96
ØØØ97
                  for simplicity, we are doing that.
00098
øøø99
                  LD
                           C,1
                                             ;Select Drive 1
                           DE, SYSSEC
ØØ1ØØ
                  LD
                                             ;Write Cylinder 20, Sector 0
ØØ1Ø1
                  LD
                           HL, BUFF
                                             ;Point to the data to be written
ØØ1Ø2
                  LD
                           A, @WRSSC
                                             ;Write a system sector
ØØ1Ø3
                  RST
                           28<sub>H</sub>
                                             ;Call the @WRSSC svc
ØØ1Ø4
                  JR.
                           NZ, ERROR
                                             ;An error occurred, so abort
ØØ1Ø5
øølø6
                           A, @EXIT
                                             ;Return to TRSDOS or the calling program
                  LD
ØØ1Ø7
                  RST
                           28H
                                             ;Call the @EXIT svc
ØØ1Ø8
øø1ø9
                  This routine displays an error message if anything goes wrong.
øø11ø
                  Note that @CKDRV does not return an error message, so @ERROR
         ;
ØØ111
                  cannot be used for it without some manipulation.
ØØ112
ØØ113
         ERROR:
                  OR
                           ØCØH
                                             ;Set bit 7
ØØ114
                  LD
                           C,A
                                             ;Load error number into register C
                           A, @ERROR
                                             This will display the error message and return to the calling program
                  T.D
ØØ115
ØØ116
                  RST
                           28H
                                             :Call the @ERROR svc
ØØ117
ØØ118
ØØ119
                  LD
                           A.@ABORT
                                             ; Now, force an abort. This will return
ØØ12Ø
                                             to TRSDOS Ready and will abort any
                                             ;JCL file that is currently executing
ØØ121
                                             :Call the @ABORT svc
                           28H
ØØ122
                  RST
ØØ123
ØØ124
         BUFF:
                  DEES
                           256
                                             ;256-byte buffer to store the sector that
                                             ;is read and then written
ØØ125
ØØ126
ØØ127
                  END
                           START
```

Sample Program E

```
Ln #
                   Source Line
øøøø1
                   This program displays the filenames of the disk in
00002
                   Drive Ø three different ways.
ØØØØ3
øøøø4
                   PSECT
                            зааан
                                              ;Program begins at x'3000'
ØØØØ6
ØØØØ7
                  First, declare the equates for the SVCs we intend to use.
ØØØØ8
                  This is not mandatory, but it makes the program easier to follow.
gggg9
øøø1ø
         @CMNDT: EQU
                                              ; Execute a TRSDOS command and return
00011
                                               ;to TRSDOS Ready
ØØØ12
         @CMNDR: EQU
                            25
                                               ; Execute a TRSDOS command and return
                                              ;to the calling program
ØØØ13
00014
         ADODIE: BOIL
                            34
                                               ;Display visible filenames on the
ØØØ15
                                               ;specified disk drive
ØØØ16
ØØØ17
ØØØ18
                   First, pass a "DIR : 0" command to the system. TRSDOS will
øøø19
                   execute this command and then return to this program.
øøø2ø
øøø21
                                              ;Point at command we want to execute
         START:
                  LD
                            HL, DIRØ
øøø22
                   LD
                            A, @CMNDR
                                              ; Execute the specified command and return
ØØØ23
                  RST
                            28H
                                              ;Call the @CMNDR svc
ØØØ24
ØØØ25
                  You may have noticed that the DIR displayed the files, but that
                  they were not sorted alphabetically. This is because the DIR command will not use memory above x'3\emptyset\emptyset\emptyset' when it is invoked with
øøø26
         ;
ØØØ27
         ï
ØØØ28
                  a @CMNDR svc. This prevents the DIR command from performing a
ØØØ29
                  sort of the filenames.
         :
ØØØ3Ø
øøø31
ØØØ32
                  Now do a directory command using the @DODIR svc.
         ;
ØØØ33
                                              ;Use Function \emptyset which displays all ;visible files in the directory.
ØØØ34
                  T.D
                            B,Ø
ØØØ35
ØØØ36
                  T.D
                            C,Ø
                                              ; Put source drive number in register C
                            A,@DODIR
ØØØ37
                  T.D
                                              The filenames will be read from the
øøø38
                                              ;directory and displayed in the
00039
                                              ;order they appear in the directory.
ØØØ4Ø
                  RST
                            28H
                                              ;Call the @DODIR svc
ØØØ41
ØØØ42
ØØØ43
                  Now pass a "DIR :0" command to the system. This time
         ;
00044
                  the command will be executed and then TRSDOS will not return
ØØØ45
                  to this program, but will return to TRSDOS Ready.
         ;
ØØØ46
ØØØ47
                  LD
                            HL, DIRØ
                                              ;Point at the command we want performed
                                              ;and execute it, but don't return to
ØØØ48
                  LD
                           A,@CMNDI
ØØØ49
                                              ;this program.;Call the @CMNDI svc
øøø5ø
                  RST
                            28H
ØØØ51
                                              ;This svc returns to TRSDOS Ready.
ØØØ52
์ ฮฮฮฮร 3
                  Note that when the library command DIR is performed this time,
                  the display of files is sorted. This is because DIR determines that it was invoked with a @CMNDI svc, and it will not return to the calling program. Therefore, DIR is free to use the
ØØØ54
         ;
ØØØ55
         :
ØØØ56
         ;
ØØØ57
                  memory above x'3000' to perform the sort of the filenames in
ØØØ58
                  the directory.
         :
ØØØ59
ØØØ6Ø
ØØØ61
                  Constants
         ;
ØØØ62
ØØØ63
         DIRØ:
                  DEFM
                           'DIR :Ø'
                                              ;This command is passed to TRSDOS
ØØØ64
                                              ; via the @CMNDR and @CMNDI SVCs.
ØØØ65
                  DEFB
                           ØDH
                                              ;It must be terminated with an <ENTER>.
ØØØ66
ØØØ67
```

END

START

Sample Program F

```
Ln #
                 Source Line
                 This program adds to the system task scheduler a task
øøøø1
øøøø2
                 which displays the date and a running count of the number
                 of times the task has been executed.
ØØØØ3
ØØØØ4
                 For simplicity, the program tries to use task slot \emptyset.
øøøø5
                 If it is already in use, it assumes that the task using that
                 slot is this program, and it kills the task. It then tries to
øøøø6
                 recover the memory used by the task in high memory.
00007
                 If the task slot is not in use, the task is placed in high memory, and the address of the task is passed to the task scheduler.
øøøø8
øøøø9
ØØØ1Ø
                 The first time you run this program it adds the task, and the
                 next time you run this program, it removes the task.
ggg11
ØØØ12
                                            ;This program starts at x'3000'
ØØØ13
                 PSECT
ØØØ15
                 First, declare the equates for the SVCs we intend to use.
ØØØ16
                 This is not mandatory, but it makes the program easier to follow.
ØØØ17
99918
                                            ;Add a task entry to the scheduler
øøø19
        @ADTSK: EQU
øøø2ø
        @CKTSK: EQU
                          28
                                            ;Check to see if a task slot is in use ;Return the date in ASCII format
øøø21
        @DATE: EQU
                          18
                                            ;Display a message
                          1ø
øøø22
        @DSPLY: EQU
                                            ;Return to TRSDOS Ready or the caller
ØØØ23
        @EXIT: EQU
                          22
00024
        @GTMOD: EQU
                          83
                                            ;Locate a memory module
        @HEXDEC: EQU
                                            :Convert a binary value to decimal ASCII
ØØØ25
                          97
                                           Read or modify HIGH$ or LOW$
                          1ØØ
ØØØ26
        @HIGH$: EQU
                                            ;Remove a task entry from the scheduler
ØØØ27
        @RMTSK: EQU
                          ЗØ
                                            ;Perform video operations
         @VDCTL: EQU
                          15
ØØØ28
                                            ;Find out where the program counter is
00029
         @WHERE: EQU
00030
                                            ; when this SVC is executed. This is
øøø31
                                            ;useful in relocatable code that must
                                            ;make absolute address references to
ØØØ32
ØØØ33
                                            ; call subroutines or modify data.
ØØØ34
ØØØ35
                 Below we will define a macro to simulate a call relative
ØØØ36
ØØØ37
                 instruction. Since the task must be able to run no matter
                 where it is placed, it must use relative jumps and calls. The Z8Ø instruction set has a jump relative (JR), but does
øøø38
ØØØ39
00040
                 not have a call relative instruction. This can be simulated
         ;
                 using the @WHERE SVC, which returns the address of the caller
ØØØ41
                 in a register. This address can be adjusted and placed on
ØØØ42
        ;
ØØØ43
                 the stack as a return address. Then a jump relative can be used
        ;
                 to reach the subroutine.
ØØØ44
ØØØ45
                                            ;#1 will be the address you want to call
ØØØ 46
        CALLR: MACRO
                          #1
                                            ;Save the registers we damage
ØØØ47
                 PUSH
                          HL
ØØØ48
                  PUSH
                                            ;Save it
                          BC
                                            ;Save it
ØØØ49
                 PUSH
                          AF
                                            ;Get our current address
øøø5ø
                  LD
                          A, @WHERE
øøø51
                  RST
                          28H
                                            ;Call the @WHERE svc
                          BC,3+1+1+1+1+2 ;Get the lengths of the instructions after
ØØØ52
                 LD
                                            ;the SVC. This will allow the subroutine
øøø53
                                            ;to return to the correct address.
ØØØ54
                  ADD
                          HL, BC
                                            ;Add that offset to where we are
ØØØ55
                                            ;Put stack back
ØØØ56
                  POP
                          AF
                                            ;Restore registers
00057
                  POP
                          BC
                                            ;Put return address on stack and restore HL
                           (SP),HL
ØØØ58
                  EX
                                            ;Jump to the subroutine
ØØØ59
                  JR
                          #1
                                            ; End of the macro
øøø6ø
                  ENDM
00061
øøø62
                 This is the main program. It loads at x'3000'. It decides
ØØØ63
                  if it needs to add or remove the task in the scheduler tables.
ØØØ64
                 If it adds the task, it moves a copy to the top of memory and
ØØØ65
                 protects it, and adds a task entry to the scheduler. If it is removing a task, it kills the entry in the scheduler
øøø66
```

ØØØ67

```
ØØØ68
                  tables, and then attempts to recover the memory used by the task.
 ØØØ69
 øøø7ø
          BEGIN:
                                             ; First, we will test slot \emptyset
                           A,@CKTSK
 ØØØ71
                  T.D
                                             ;to see if anyone is using it
 ØØØ72
                  RST
                           28H
                                             ;Call the @CKTSK svc
 ØØØ73
                  JR
                           NZ.KILLIT
                                             There is a task using slot Ø, kill it
 ØØØ74
 00075
                  At this point, we want to add a task to high memory. First we find the value for HIGH$ and put a copy of the task there. Then we protect the task by moving HIGH$ below
 ØØØ76
 ØØØ77
          ;
 ØØØ78
                  the new task.
          ;
 ØØØ79
 øøø8ø
                           HL,Ø
                                             ;First, get the value of HIGH$
 øøø81
                  LD
                           B,H
                                             ;Read HIGH$
 ØØØ82
                           A, @HIGHS
                  LD
 øøø83
                  RST
                           28H
                                             ;Call the @HIGH$ svc
 00084
                           (ENDADD), HL
                  LD
                                             ;Save this value as the last address
 ØØØ85
                                             ;that the task will be stored in once it
 ØØØ86
                                             ; is moved to high memory
 ØØØ87
 ØØØ88
                  LD
                           DE, HL
                                             ;Put that value here
 ØØØ89
                  LD
                           HL, MODEND-1
                                             ;Point at the end of the module
 øøø9ø
                  LD
                           BC, MODEND-MODULE; Move the module from where it is
 øøø91
                                            ;right now to a position below HIGH$
ØØØ92
                  LDDR
                                             ;Do the copy
ØØØ93
ØØØ94
                  LD
                           HL,DE
                                             ; Now protect the module using HIGH$
ØØØ95
                  LD
                           B,Ø
                                             ;Update HIGH$
ØØØ96
                  T.D
                           A,@HIGH$
                  RST
ØØØ97
                           28H
                                             ;Call the @HIGH$ svc
øøø98
ØØØ99
                  Now we need to load the TCB entry in the module with the address
ØØ1ØØ
                  of the first instruction to be executed.
         ;
ØØ1Ø1
ØØ1Ø2
                                            ;IX now points at memory header
ØØ1Ø3
                  LD
                           BC, ENTRY-MODULE+1
                                                    ;Get the offset into the module
00104
                                                    ;of the first instruction
ØØ1Ø5
                  ADD
                                             ;HL now contains the actual starting address
ØØ1Ø6
                  T.D
                           (IX+(1+MODTCB-MODULE)),L
                                                          ;Store LSB of the address
ØØ1Ø7
                  T.D
                           (IX+1+(1+MODTCB-MODULE)),H
                                                            ;Store MSB of the address
ØØ1Ø8
ØØ1Ø9
                  Now the task is ready to run. We now add the entry to the task
ØØ11Ø
                 scheduler table.
         ;
ØØ111
ØØ112
                  T.D
                          BC, MODTCB-MODULE+1
                                                    ;Get offset into the
00113
                                                    ; module of the TCB word
00114
                  PHSH
                          ΙX
                                            ;Get a copy of the base address
ØØ115
                  POP
                          ^{\rm HL}
                                            ; Put base address here
ØØ116
                  ADD
                          HL,BC
                                            ; Now HL points at TCB address
ØØ117
                 LD
                          DE, HL
                                            ;Put that value in DE
ØØ118
                 LD
                          C,Ø
                                            ;Add this entry to task slot Ø
ØØ119
                          A, @ADTSK
                 LD
                                            ;Add this task, to be run every 266.67 msec
ØØ12Ø
                 RST
                          28H
                                            ;Call the @ADTSK svc
ØØ121
ØØ122
                 The main program has now done its work and can exit.
         ;
ØØ123
ØØ124
                 LD
                          HL, ADDED
                                            ;Point at a message saying what was done
ØØ125
                 LD
                          A, @DSPLY
                                            ;and print it
ØØ126
                 RST
                          28 H
                                            ;Call the @DSPLY svc
ØØ127
ØØ128
                 LD
                          A, @EXIT
                                            ;Now exit
ØØ129
                 RST
                          28H
                                            ;Call the @EXIT svc
00130
ØØ131
                 This SVC does not return.
ØØ132
ØØ133
ØØ134
                 This part of the code removes the task from the scheduler
         ;
ØØ135
                 tables and then attempts to recover the memory that was used
```

```
ØØ136
                  by the task in high memory. If another high memory module
                  was added AFTER this task was added, then the memory that
ØØ137
                  was used by this task cannot be recovered.
ØØ138
ØØ139
ØØ14Ø
                                              ;We want to remove the task in slot Ø
         KILLIT: LD
                           C.Ø
ØØ141
                  LD
                           A, @RMTSK
                                              ;Call the @RMTSK svc
                  RST
ØØ142
                            284
ØØ143
                  At this point, the task is no longer called by the operating
ØØ144
                  system. Now we want to determine if we can
ØØ145
ØØ146
                  reclaim the memory it was using.
ØØ147
                                              ;Point at the name of the module
                           DE, MODNAM
ØØ148
                  T.D
                                              ;Look for a module with that name
                           A,@GTMOD
ØØ149
                  LD
ØØ15Ø
                  RST
                            28H
                                              ;Call the @GTMOD svc
                                              ; If NZ is set, then we killed some other
ØØ151
                  JR
                           NZ, CANT
                                              ; task that was using slot \emptyset. Oops.; In that case, just stop and don't do any
ØØ152
ØØ153
                                              ;more damage.
ØØ154
ØØ155
                  T.D
                           IX,HL
                                              ;Set IX to point to the module.
                                              ;Read the current value of HIGH$
ØØ156
                  LD
                            B,Ø
ØØ157
                  T.D
                            HL,Ø
                                              ;to see if this is the first program in
                                              ;high memory
ØØ158
                                              ;If it is, then we can recover the space ;Call the @HIGH$ svc
99159
                  140
                            A, @HIGH$
ØØ16Ø
                  RST
                            28H
                                              ;Move HIGH$ up by one byte ;Take the address of our module
ØØ161
                  TNC
                           HT.
                  PUSH
ØØ162
                            TX
ØØ163
                  POP
                            DE
                                              ;and store it here
                                              :Compare these
ØØ164
                  XOR
                            Α
                            HL,DE
                                              ;Are they the same?
;No, the high memory module can't be removed
                  SBC
ØØ165
ØØ166
                  .TR
                           NZ, CANT
ØØ167
                  At this point, we know it is ok to reclaim the memory used by the
ØØ168
                  high memory task.
ØØ169
ØØ17Ø
ØØ171
                            HL,(IX+2)
                                              ; Read the end of module value out of the
                                              :header information
ØØ172
                                              ;Update the HIGH$ value
ØØ173
                  LD
                            B,Ø
                            A,@HIGH$
ØØ174
                  LD
ØØ175
                  RST
                            28H
                                              :Call the @HIGH$ svc
ØØ176
                                              ;Point to a message saying all is well
                  LD
                            HL,OK
ØØ177
                            A.@DSPLY
                                              ;and print it
ØØ178
                  LD
                                              ;Call the @DSPLY svc
ØØ179
                   RST
                            28H
ØØ18Ø
ØØ181
                   LD
                            A, @EXIT
                                              ;Exit the main program
                                              ;Call the @EXIT svc
ØØ182
                   RST
                            28H
00183
ØØ184
                   Here we will display a message saying we removed the task from the scheduler table, but we cannot reclaim the memory that was
ØØ185
ØØ186
         ;
ØØ187
                   used.
ØØ188
                            HL, RECLM
                                               ;Point to the message
ØØ189
         CANT:
                   LD
                   LD
                            A.@DSPLY
                                              ;and display it
ØØ19Ø
                                               ;Call the @DSPLY svc
ØØ191
                   RST
                            28H
ØØ192
ØØ193
                   T<sub>1</sub>D
                            A,@EXIT
                                               ;Now exit
                                               ;Call the @EXIT svc
                   RST
                            28H
ØØ194
ØØ195
ØØ196
ØØ197
                   Messages
ØØ198
                            'Task placed in high memory and scheduled.'
ØØ199
          ADDED:
                   DEFM
øø2øø
                   DEFB
                            'Task removed from scheduler table and memory reclaimed.'
                   DEFM
ØØ2Ø1
          OK ·
ØØ2Ø2
                   DEFB
                            ØDH
                            'Task removed from scheduler table, but memory could not '
```

00203

RECLM:

DEFM

```
ØØ2Ø4
                  DEFM
                           'be recovered.
ØØ2Ø5
                  DEFB
                           ØDH
ØØ2Ø6
ØØ2Ø7
                  The Task begins at this point. This part of the program loads
ØØ2Ø8
                  in low memory but is relocated to a point just below HIGH$.
ØØ2Ø9
ØØ21Ø
                  This is the Memory Header Block. This block of data allows
         ;
ØØ211
                  the system to locate this module in memory by name,
ØØ212
                  using the @GTMOD svc.
ØØ213
ØØ214
         MODULE: JR
                           ENTRY
                                             ;Jump (relative) to the starting address
                                             ;The highest address in the program.
ØØ215
         ENDADD: DEFW
ØØ216
                                             This value is patched in before the program
ØØ217
                                             ; is relocated. This will be used
ØØ218
                                             ; later in recovering the memory used by
ØØ219
                                             this task.
ØØ22Ø
                           MODTCB-MODNAM
                  DEFR
                                             ; Number of bytes in the name field below.
ØØ221
         MODNAM: DEFM
                           'HPTTME!
                                             This is the name of the module and is
ØØ222
                                             :used to identify the module.
ØØ223
         MODTCB: DEFW
                                            ;Actual address to start execution. This
00224
                                            ; value is patched in after the program is
ØØ225
                                            ;relocated.
ØØ226
                           ø
                  DEFW
                                            ;Spare system pointer - RESERVED
ØØ227
ØØ228
                  This area contains data used by the task. It is addressed using
ØØ229
                  the IX register which points to the task when it is executed.
ØØ23Ø
ØØ231
         COUNTER: DEFW
                                            ;Count of how many times we have run
ØØ232
         DATBUF: DEFS
                                            ;The date is stored here
ØØ233
ØØ234
                  This is the actual task.
                 On entry to the task, IX points at the Task Control Block (TCB), which in this program is the label 'MODTCB'. All data is referenced by indexing from that address.
ØØ235
         ;
ØØ236
ØØ237
ØØ238
ØØ239
00240
        ENTRY: PUSH
                          ΤY
                                            ;Save this register. It is not saved by
ØØ241
                                            ;the Task Scheduler, and we use it.
ØØ242
                                            ; Registers AF, BC, DE, and HL are saved
00243
ØØ244
                  Now we will read the current date.
ØØ245
ØØ246
                  T<sub>2</sub>D
                          HL, IX
                                            ;Get a copy of the index pointer
                          BC, DATBUF-MODTCB; Get the offset needed to access the date HL, BC ; Now we have a pointer to the date
ØØ247
                  T.D
ØØ248
                  ADD
ØØ249
ØØ25Ø
                  PUSH
                                            ;Save the pointer to the start of the task
                                            ;Save a copy of that pointer
ØØ251
                  PUSH
                           HL
ØØ252
                          A,@DATE
                 LD
                                            ; Ask the system what the date is
ØØ253
                 RST
                           28H
                                            ;Call the @DATE svc
ØØ254
ØØ255
                 T.D
                           (HL),Ø
                                            ;Terminate the date string
ØØ256
                                            ;Put pointer to the date here ;We will use this pointer later on
ØØ257
                 POP
                          DE
ØØ258
                 PUSH
ØØ259
                          HL,ØØ28H
                 L.D
                                            ;Put the cursor on the top line,
ØØ26Ø
                                            ;specified in register HL
                                            ;at the 41st position on the screen
ØØ261
ØØ262
                 CALLR
                          WRITE
                                            ;Write the message at the position
                 PUSH
                          HI.
                                            ;Save the registers we damage
                 PUSH
                          BC.
                                            ;Save it
+
                 PUSH
                          AF
                                            :Save it
                          A. @WHERE
                 LD
                                            ;Get our current address
                 RST
                          28H
                                            ;Call the @WHERE svc
                 LD
                          BC,3+1+1+1+1+2; Get the lengths of the instructions after
                                            ;the SVC. This will allow the subroutine
                                            ; to return to the correct address.
```

```
;Add that offset to where we are
                 ADD
                         HL, BC
+
                 POP
                         AF
                                           ; Put stack back
                                           ;Restore registers
                         BC.
                 POP
                                           ; Put return address on stack and restore HL
+
                 EΧ
                          (SP),HL
                                           ;Jump to the subroutine
                 JR
                         WRITE
                                           ; Note that the above was actually a macro
ØØ263
                                           ;which performs a relative call.
ØØ264
ØØ265
                 This part of the task displays a count of the number of times
ØØ266
ØØ267
                 the task has been executed.
ØØ268
                                           ;Get the pointer to DATBUF back
ØØ269
                 POP
                          DE
                                           ;Get the pointer to the beginning of
ØØ27Ø
                 POP
                          ΤX
                                           ;this task
ØØ271
                                           ;Save the pointer to DATBUF again
ØØ272
                 PUSH
                          BC, COUNTER-MODTCB
                                                  :Get the offset to our data
                 T.D
ØØ273
                                                  ;area
ØØ274
                                           ; Put a copy of the base address in HL
                          HL, IX
ØØ275
                 LD
                                           ; Add offset. Now HL points to COUNTER:
ØØ276
                 ADD
                          HL, BC
                                           ; Put the pointer to COUNTER in IY
                          IY, HL
ØØ277
                 LD
                                           ;Get LSB of the counter
                          L,(IY)
                 LD
ØØ278
                                           ;Get MSB of the counter
ØØ279
                 LD
                          H, (IY+1)
                                           ;Increment the number of times we have run
00280
                 INC
                          HL
                                           ;Store the LSB of the counter;Store the MSB of the counter
ØØ281
                 LD
                          (IY),L
                          (IY+1),H
                 T.D
ØØ282
00283
                                           ;Convert the count to decimal
                 T.D
                          A,@HEXDEC
ØØ 284
                                           :Call the @HEXDEC svc
ØØ285
                 RST
                          28H
ØØ286
                 XOB
                                           ;Get a zero
ØØ287
                                           :Terminate the count string
                          (DE),A
ØØ288
                 LD
00289
                                           ;Put pointer to date here
                 POP
ØØ29Ø
                          нь, ØØ36н
                                           ; Put the cursor on the top line,
ØØ291
                 LD
                                           ;specified in register HL
ØØ292
                                           ;at the 55th position on the screen
ØØ293
                 CALLR
                          WRITE
                                           ;Write the message at the position
ØØ294
                                           ;Save the registers we damage
                 PUSH
                          HL
                 PUSH
                          BC
                                           ;Save it
                 PUSH
                          AF
                                           :Save it
                          A, @WHERE
                                           ;Get our current address
                 T.D
                                           ;Call the @WHERE svc
                 RST
                          28H
                                           ;Get the lengths of the instructions after
                 T.D
                          BC,3+1+1+1+1+2
                                           ;the SVC. This will allow the subroutine
                                           ;to return to the correct address.
                                           ; Add that offset to where we are
                  ADD
                          HL,BC
                                           ;Put stack back
                          AF
                  POP
                  POP
                                           ;Restore registers
                                           ;Put return address on stack and restore HL
                          (SP),HL
                  EX
                                           ;Jump to the subroutine
                 JR
                          WRITE
                                           ; Note that the above was actually a macro
ØØ295
ØØ296
                                           ; which performs a relative call.
ØØ297
                 Now we restore the IY register and return to the task scheduler.
ØØ298
ØØ299
øøзøø
                                           :Restore IY value
                  POP
                          ΙY
                                           ;Return to the task scheduler
ØØ3Ø1
                  RET
ØØ3Ø2
ØØ3Ø3
                  This routine places characters on the display using the @VDCTL
ØØ3Ø4
                  svc instead of @DSP or @DSPLY. This allows the cursor to
ØØ3Ø5
         ;
                  remain at its current position when we write to the screen.
ØØ3Ø6
         ;
                  This routine must be called using the relocatable call macro
ØØ3Ø7
                 CALLR.
ØØ3Ø8
ØØ3Ø9
ØØ31Ø
         WRITE:
                 LD
                          B, 2
                                           ; Put character on the display
ØØ311
                                           ;Get a character to display
                          A, (DE)
ØØ312
         TSKLP: LD
```

ØØ313 ØØ314		OR	A	;Is it time to stop putting this on ;the display?
ØØ315		RET	Z	:Yes, return to the caller
ØØ316		PUSH	HL	;Save the registers, as the SVC will
ØØ317		PUSH	DE	;alter the contents
ØØ318		PUSH	BC	
ØØ319		LD	C,A	;Put the character here
ØØ32Ø		LD	A, @VDCTL	; Put character on screen at specified position
ØØ321		RST	28H	;Call the @VDCTL svc
ØØ322		POP	BC	;Restore registers
ØØ323		POP	DE	•
ØØ324		POP	HL	
ØØ325		INC	L	;Advance display position
ØØ326		INC	DE	;Point to next character to display
ØØ327		JR	TSKLP	;Loop till date is completely displayed
ØØ328				
ØØ329	MODEND:	END	BEGIN	;End of task and main program

Sample Program G

```
This program is a sample Extended Command Interpreter. You
gggg1
øøøø2
                 may make the ECI as large or small as you require.
                 use allof main memory, or you can restrict yourself to the system overlay area (x'26ØØ' to x'2FFF').
00003
ØØØØ4
                 To pass a command to the normal system interpreter for
øøøø5
ØØØØ6
                  processing, use the @CMNDI svc. TRSDOS executes the command
00007
                 and reloads the ECI. If you want to have multiple entry
                 points, Bits 2 - Ø in EFLAG$ are in Register A on entry (in Bits 6 - 4),or you may read EFLAG$ yourself.

EFLAG$ is totally dedicated to the ECI, and may contain any
ØØØØ8
gggg9
ØØØ1Ø
                 non-zero value. If EFLAGS contains a zero, TRSDOS uses its own interpreter. Other programs that want to activate an ECI,
ØØØ11
øøø12
ØØØ13
                  should set the EFLAG$ to a non-zero value and execute a @EXIT
00014
ØØØ15
ØØØ16
                 To install an ECI, use the command:
ØØØ17
                           COPY filename SYS13/SYS.LSIDOS:d (C=N)
                 If you omit the C=N option, the SYS13 file loses it's "SYS" status and you will receive 'Error \emptyset7' messages when you try
ØØØ18
øøø19
øøø2ø
                  to use it as a ECI.
ØØØ21
                  When SYS1 (the normal command interpreter) has completed it's
ØØØ22
                  normal housekeeping and is about to display the "TRSDOS Ready"
ØØØ23
00024
                  prompt, it checks EFLAG$. If EFLAG$ contains a non-zero
ØØØ25
                  value, TRSDOS loads and executes the Extended Command
       ;
ØØØ26
                  Interpreter.
ØØØ27
                  To execute this program, type <*><Enter>.
øøø28
                 This program checks EFLAG$ to see if it is zero. If so, it sets it to a non-zero value. This causes this program to be
ØØØ29
ØØØ3Ø
ØØØ31
                  used instead of the normal interpreter when you execute an
                  @EXIT or @ABORT SVC. (@CMNDI and @CMNDR invoke the TRSDOS
ØØØ32
                  interpreter.) If EFLAG$ is non-zero, the ECI displays a few prompts and the names of all visible /CMD files on logical
øøø33
ØØØ34
        ;
ØØØ35
                  Drive Ø.
        ;
ØØØ36
                  The operator may then type the name of a program to execute.
øøø37
ØØØ38
                  If you press <Break>, this program sets EFLAG$ to Ø, executes
                  an @EXIT SVC and returns to TRSDOS Ready.
øøø39
00040
ØØØ41
                  By pressing a number, Ø through 7, you can specify the drive
                  that TRSDOS searches. This program stores this value in
00042
                  EFLAG$. Each time this program is invoked, it reads the value
ØØØ43
                  from EFLAG$ and uses that drive.
ØØØ44
ØØØ45
                  Note that if a drive is not enabled, not formatted, doesn't
ØØØ46
        ;
                  exist, or contains no visible /CMD files, this program
ØØØ47
ØØØ48
                  redisplays the prompt.
ØØØ49
øøø5ø
                  PRINT
                           SHORT, NOMAC
ØØØ51
ØØØ52
                  PSECT
                            зааан
                                              ;This program starts at x'3000'
ØØØ53
ØØØ54
                  Declare the equates for the SVCs used.
ØØØ55
                  This is not mandatory, but it makes the program easier to
                  follow.
ØØØ56
                                              ;Exit and return to TRSDOS
ØØØ57
        @EXIT:
                  EQU
                            22
        @DSPLY: EQU
ØØØ58
                            10
                                              ;Display a string
ØØØ59
        @FLAGS: EQU
                            101
                                             ;Locate the system flag area
                                              ;Get the names of filenames
ØØØ6Ø
        @DODIR: EQU
                            34
                                              ;Accept a command and allow editing
ØØØ61
        @KEYIN: EQU
                            9
                                              ;Execute a command (using SYS1)
ØØØ62 @CMNDI: EQU
                            24
ØØØ63
                  On entry, determine if EFLAG$ is set to zero or not. If it
00064
ØØØ65
                  is set to zero, this program is being started by typing PROGRAM(Enter) or <*><Enter>. In that case, set EFLAG$ to a
ØØØ66
                  non-zero value so that in future, TRSDOS uses this interpreter
ØØØ67
ØØØ68 ;
                  instead of it's own.
```

```
ØØØ69
                 If EFLAG$ is non-zero, this initialization has already been
00070
                 done and can be skipped.
       ;
ØØØ71
ØØØ72
       BEGIN:
                LD
                          A,@FLAGS
                                           ;Get the starting address of the flag
area
ØØØ73
                 RST
                          281
                                           :Call the @FLAGS svc
ØØØ74
00075
                 LD
                          A, (IY+4)
                                           ; Read the EFLAG$ (ECI flag)
                                           ;Is it set to zero? ;Run the ECI
ØØØ76
                 OR
                          NZ, ECIRUN
99977
                 JR
ØØØ78
ØØØ79
                 T.D
                          A,8
                                           ;Get a non-zero value. The value ;needs to be a non-zero value that
øøø8ø
                                           ; does not set Bits \emptyset, 1 or 2. The
øøø81
ØØØ82
                                           ;default drive # is kept in these bits.
ØØØ83
                 LD
                          (IY+4),A
                                           ;Set the EFLAG$ to a non-zero value
ØØØ84
                 LD
                          HL, PROMPT
                                           ; Explain how this works
                                           ;Display message
ØØØ85
                 .TR
                          ECTGO
ØØØ86
00087
                 When the system is about to display
ØØØ88
                 TRSDOS Ready, it executes this code instead.
ØØØ89
                          HL, SPROMPT
øøø9ø
        ECIRUN: LD
                                           ;Point at the prompt to use
                          A, @DSPLY
                                           ;Display the prompt
øøø91
        ECIGO: LD
ØØØ92
                 RST
                          28H
                                           ;Call the @DSPLY svc
øøø93
ØØØ94
                 Display the names of all /CMD files
ØØØ95
ØØØ96
                 LD
                          A, (IY+4)
                                           ;Get the EFLAG$
ØØØ97
                 AND
                                           ;Delete all but the drive number field
øøø98
                 LD
                          C,A
                                           ;Store the drive number for the svc
                          A,@DODIR
ØØØ99
                 LD
                                           ;Do a directory display
ØØ1ØØ
                 LD
                          B, 2
                                           Display visible, non-system files; that match "CMD" (stored at CMDTXT)
                          HL, CMDTXT
ØØ1Ø1
                 LD
ØØ1Ø2
                                           ;Call the @DODIR svc
                 RST
                          28 H
ØØ1Ø3
ØØ1Ø4
                 Prompt for a filename or a function key.
ØØ1Ø5
                          HL, BUFFER
00106
       ASK:
                 LD
                                           ;Point at text buffer
ØØ1.Ø7
                 LD
                          В,9
                                           ;Allow up to 8 characters and <Enter>
ØØ1Ø8
                 LD
                          C,Ø
                                           ;Required by the svc
ØØ1Ø9
                 LD
                          A, @KEYIN
                                           ;Input text with edit capability
ØØ11Ø
                 RST
                                           ;Call the @KEYIN svc
                          28H
ØØ111
ØØ112
                 JR
                          C,QUIT
                                           ;The carry flag is set when the
                                           ;operator presses <BREAK>. Zero the
ØØ113
ØØ114
                                           ;EFLAG$ and exit to TRSDOS
ØØ115
00116
                 LD
                          HL, BUFFER
                                           ;Point at the start of the buffer
00117
                                           ;Get the character
                 LD
                          A, (HL)
ØØ118
ØØ119
                 CP
                          ØDH
                                           ;Did they type anything?
ØØ12Ø
                                           ;No, just repeat the prompt.
                JR
                          Z, ASK
00121
                                           ;If you want to redisplay the ;directory, change "ASK" to "ECIRUN".
ØØ122
ØØ123
ØØ124
                 SUB
                          ıgı
                                           ;Convert value to binary
                          7+1
00125
                 CP
                                           ;Is the character a Ø -
ØØ126
                 JR
                          NC, NAME
                                           ;Must be a filename
ØØ127
ØØ128
                The operator has typed 1 or more characters that start with
ØØ129
                 a number. This program assumes that the operator is defining
       :
                a new drive number and stores this value in EFLAG$ for future use. TRSDOS does not alter this value.
ØØ13Ø
       :
ØØ131
       ;
ØØ132
                The next time this program is run, EFLAGS contains the
       ;
ØØ133
                same value and this program knows what drive to scan.
ØØ134
ØØ135
                 LD
                                           ;Save the drive number
ØØ136
                 LD
                          A,(IY+4)
                                           ;Get the EFLAG$
```

```
;Delete the old drive number
ØØ137
                AND
                         8
                                         ;Insert the new drive number
gg138
                OR
                                         :Save that value for future use
ØØ139
                LD
                         (IY+4),A
                                          ;Scan the new drive
                         ECTRUN
ØØ14Ø
                .TR
ØØ141
                The operator pressed (Break). Turn off the ECI and return to
ØØ142
ØØ143
                TRSDOS.
ØØ144
       QUIT:
                XOR
                                         ;Get a zero
                                         ;Set EFLAG$ to zero
                         (IY+4),A
ØØ1 45
                LD
                         HL, EPROMPT
                                         ;Point at the shutdown message
ØØ146
                LD
ØØ147
                         A, @DSPLY
                                          ;And acknowledge the <Break>
                LD
                RST
                         28H
                                          ;Call the @DSPLY svc
ØØ148
                                          ;Return to TRSDOS Ready
ØØ149
                LD
                         A, @EXIT
ØØ15Ø
                RST
                         28H
                                          ;Call the @EXIT svc
ØØ151
                The operator entered what might be a filename or a library command. Pass it to TRSDOS for processing. If there is an
ØØ152
ØØ153
                error, TRSDOS is responsible for determining what the error is
00154
ØØ155
                and printing a message.
                (HL already points at the start of the buffer.)
ØØ156
ØØ157
                         A, ØDH
                                          ;Look for this character
ØØ158
       NAME:
                LD
                                          ; In the command
ØØ159
       FDIV:
                CP
                         (HI.)
                                          ;Found the end of the filename
                JR
                         Z, FOUND
øø16ø
00161
                INC
                         HI.
                                          ; Move character to next byte
                         FDIV
                                          ;Find the divider (in this case, a ØDH)
                .TR
ØØ162
ØØ163
                Found the end of a filename, and add the drive number from
ØØ164
EFLAGS.
                Note that this program may not work properly if the operator
ØØ165
                supplies a drive number as part of the filename.
00166
ØØ167
                                          :Add a drive number to the filename
                         (HL),':'
ØØ168
       FOUND:
                LD
                                          :Advance the pointer to the next byte
                INC
ØØ169
                         HL
                                          ;Get the EFLAG$ value
øø17ø
                LD
                         A, (IY+4)
ØØ171
                AND
                                          ;Delete all but the drive number
                                          Convert the binary value to ASCII; Add that to the filename
                         A. 'Ø'
ØØ172
                ADD
ØØ173
                T.D
                         (HL),A
                                          ; Advance the pointer to the next byte
ØØ174
                 INC
                         HL
ØØ175
                                          ;Write a terminator on the end
                LD
                         (HL), ØDH
                                          :Point at the text entered
                         HL, BUFFER
ØØ176
                T.D
                                          ; Execute the command, but do not
ØØ177
                LD
                         A, @CMNDI
                                          return. Since this program is the
ØØ178
                                          command processor at this time, TRSDOS
ØØ179
                                          returns control to the beginning of
ØØ179
                                          ; this module after executing the
ØØ18Ø
                                          ; command.
ØØ181
                                          ;Call the @CMNDI svc
                          288
ØØ182
                 RST
ØØ183
ØØ184
                Messages and text storage
ØØ185
                          '[Extended Command Interpreter Is Now Operational]'
       PROMPT: DEFM
ØØ186
ØØ187
                 DEFB
                          ØAH
ØØ188
                 DEFB
                          ØAH
                          'Press (BREAK) to use the normal interpreter,
                 DEFM
ØØ189
                 DEFB
                          MAH
ØØ19Ø
                          'type <Number><ENTER> to change the default drive
                 DEFM
ØØ191
                          number,'
                 DEFB
ØØ192
                          ØAH
                          or type the name of the program to run and press
ØØ193
                 DEFM
                          <ENTER> 1
                 DEFB
                                          ;Terminate the display
ØØ194
                          Ø DH
ØØ195
ØØ196
       SPROMPT : DEFB
                 DEFM
                          '[ECI On] <BREAK> to abort, n<ENTER> for new drive or
ØØ197
                          type:'
                          ' program<ENTER>'
ØØ1 98
                 DEFM
                          ØDH
                                          :Terminate the message
                 DEFB
ØØ199
ØØ2ØØ
```

ØØ2Ø1	EPROMPT: DEFM	'[Extended	Command Interpreter Is Now Disabled]'
ØØ2Ø2	DEFB	ØDH	
ØØ2Ø3			
ØØ2Ø4	CMDTXT: DEFM	'CMD'	
øø2ø5	BUFFER: DEFS	11	;Allow for filename, drivespec and ØDH
øø2ø6			•
ØØ2Ø7	END	BEGIN	; "BEGIN" is the starting address

9/Technical Information on TRSDOS Commands and Utilities

TRSDOS commands and utilities are covered extensively in the *Disk System Owner's Manual*. This section presents additional information of a technical nature on several of the commands and utilities.

Changing the Step Rate

The step rate is the rate at which the drive head moves from cylinder to cylinder. You can change the step rate for any drive by using one of the commands described below.

To set the step rate for a particular drive, use the following command:

SYSTEM (DRIVE = drive, STEP = number)

drive is any drive enabled in the system. number can be 0, 1, 2, or 3 and represents one of the following step rates in milliseconds:

0 = 6 milliseconds

1 = 12 milliseconds

2 = 20 milliseconds

3 = 30 milliseconds

Unless it is SYSGENed, the step value you select remains in effect for the specified drive only until the system is re-booted or turned off. If you use the SYSGEN command while the step value is in effect, then this step rate is written to the configuration file (CONFIG/SYS) on the disk in the drive specified by the SYSGEN command.

On a new TRSDOS disk, the step rate is set to 12 milliseconds.

To set the default bootstrap step rate used with the FORMAT utility, use the following command:

SYSTEM (BSTEP = number)

number is 0, 1, 2, or 3, which correspond to 6, 12, 20, and 30 milliseconds, respectively.

The value you select for *number* is stored in the system information sector on the disk in Drive 0. (On a new TRSDOS disk, the bootstrap step rate is set to 12 milliseconds.)

If you switch Drive 0 disks or change the logical Drive 0 with the SYSTEM (SYSTEM) command, the default value is taken off the new Drive 0 disk if you format a disk.

You can change the bootstrap step rate for a particular FORMAT operation if you do not want to use the default. Specify the new value for STEP on the FORMAT command line as follows:

FORMAT : drive (STEP = number)

drive is the drive to be used for the FORMAT. *number* is 0, 1, 2, or 3, which correspond to 6, 12, 20, and 30 milliseconds, respectively.

The step rate is important only if you will be using the disk in Drive 0 to start up the system. Keep in mind that too low a step rate may keep the disk from booting.

Changing the WAIT Value

The WAIT parameter compensates for hardware incompatibility between certain disk drives. The only time you should use it is when all tracks above a certain point during a FORMAT operation are shown as locked out when the FORMAT is verified.

The value assigned to WAIT signifies the amount of time between the arrival of the drive head at the location for a read or write, and the actual start of the read or write.

If you want to change the WAIT value, specify the new value on the FORMAT command line as follows:

FORMAT : drive (WAIT = number)

number is a value between 5000 and 50000. The exact value depends on the particular disk drive you are using. We recommend that you use a value around 25000 at first. Adjust this value higher if tracks are still locked out, or lower until the bottom limit is determined.

Logging in a Diskette

LOG is a utility program that logs in the directory track, number of sides, and density of a diskette. The syntax is:

LOG:drive

drive is any drive currently enabled in the system.

The LOG utility provides a way to log in diskette information and update the drive's Drive Code Table (DCT). It performs the same log-in function as the DEVICE library command, except for a single drive rather than all drives. It also provides a way to swap the Drive 0 diskette for a double-sided diskette.

The LOG :0 command prompts you to switch the Drive 0 diskette. You must use this command when switching between double- and single-sided diskettes in Drive 0. Otherwise, it is not needed.

Example

If you want to switch disks in Drive 0, type:

LOG : Ø (ENTER)

The system prompts you with the message:

Exchange disks and hit <ENTER>

Remove the current disk from Drive 0 and insert the new system disk. When you press (ENTER), information about the new disk is entered to the system.

Printing Graphics Characters

If your printer is capable of directly reproducing the TRS-80 graphics characters, you can use the SYSTEM (GRAPHIC) command. Once you have issued this command, any graphics characters on the screen will be sent to the line printer during a screen print. (Pressing CTRL): causes the contents of the video display to be printed on the printer.)

Do not use this command unless your printer is capable of directly reproducing the TRS-80 graphics characters.

Changing the Clock Rate

The system normally runs at the fast clock rate of 4 megahertz.

A slow mode of 2 megahertz is available, and may be necessary for real timedependent programs. (This slow rate is the same as the Model III clock rate.)

To switch to the slow rate, enter the following command:

SYSTEM (SLOW)

To switch back to the fast rate, enter:

SYSTEM (FAST)

Appendix A/TRSDOS Error Messages

If the computer displays one of the messages listed in this appendix, an operating system error occurred. Any other error message may refer to an application program error, and you should check your application program manual for an explanation.

When an error message is displayed:

- . Try the operation several times.
- Look up operating system errors below and take any recommended actions. (See your application program manual for explanations of application program errors.)
- · Try using other diskettes.
- · Reset the computer and try the operation again.
- Check all the power connections.
- Check all interconnections.
- Remove all diskettes from drives, turn off the computer, wait 15 seconds, and turn it on again.
- If you try all these remedies and still get an error message, contact a Radio Shack Service Center.

Note: If there is more than one thing wrong, the computer might wait until you correct the first error before displaying the second error message.

This list of error messages is alphabetical, with the binary and hexadecimal error numbers in parentheses. Following it is a quick reference list of the messages arranged in numerical order.

Attempted to read locked/deleted data record (Error 7, X'07')

In a system that supports a "deleted record" data address mark, an attempt was made to read a deleted sector. TRSDOS currently does not use the deleted sector data address mark. Check for an error in your application program.

Attempted to read system data record (Error 6, X'06')

An attempt was made to read a directory cylinder sector without using the directory read routines. Directory cylinder sectors are written with a data address mark that differs from the data sector's data address mark. Check for an error in your application program.

Data record not found during read (Error 5, X'05')

The sector number for the read operation is not on the cylinder being referenced. Either the disk is flawed, you requested an incorrect number, or the cylinder is improperly formatted. Try the operation again. If it fails, use another disk. Reformatting the old disk should lock out the flaw.

Data record not found during write (Error 13, X'0D')

The sector number requested for the write operation cannot be found on the cylinder being referenced. Either the disk is flawed, you requested an incorrect number, or the cylinder is improperly formatted. Try the operation again. If it fails, use another disk.

Device in use (Error 39, X'27')

A request was made to REMOVE a device (delete it from the Device Control Block tables) while it was in use. RESET the device in use before removing it.

Device not available (Error 8, X'08')

A reference was made for a logical device that cannot be found in the Device Control Block. Probably, your device specification was wrong or the device peripheral was not ready. Use the DEVICE command to display all devices available to the system.

Directory full -- can't extend file (Error 30, X'1E')

A file has all extent fields of its last directory record in use and must find a spare directory slot but none is available. (See the "Directory Records" section.) Copy the disk's files to a newly formatted diskette to reduce file fragmentation. You may use backup by class or backup reconstruct to reduce fragmentation.

Directory read error (Error 17, X'11')

A disk error occurred during a directory read. The problem may be media, hardware, or program failure. Move the disk to another drive and try the operation again.

Directory write error (Error 18, X'12')

A disk error occurred during a directory write to disk. The directory may no longer be reliable. If the problem recurs, use a different diskette.

Disk space full (Error 27, X'1B')

While a file was being written, all available disk space was used. The disk contains only a partial copy of the file. Write the file to a diskette that has more available space. Then, REMOVE the partial copy to recover disk space.

End of file encountered (Error 28, X'1C')

You tried to read past the end of file pointer. Use the DIR command to check the size of the file. This error also occurs when you use the @PEOF supervisor call to successfully position to the end of a file. Check for an error in your application program.

Extended error (Error 63)

An error has occurred and the extended error code is in the HL register pair.

File access denied (Error 25, X'19')

You specified a password for a file that is not password protected or you specified the wrong password for a file that is password protected.

File already open (Error 41, X'29')

You tried to open a file for UPDATE level or higher, and the file already is open with this access level or higher. This forces a change to READ access protection. Use the RESET library command to close the file.

File not in directory (Error 24, X'18')

The specified filespec cannot be found in the directory. Check the spelling of the filespec.

File not open (Error 38, X'26')

You requested an I/O operation on an unopened file. Open the file before access.

GAT read error (Error 20, X'14')

A disk error occurred during the reading of the Granule Allocation Table. The problem may be media, hardware, or program failure. Move the diskette to another drive and try the operation again.

GAT write error (Error 21, X'15')

A disk error occurred during the writing of the Granule Allocation Table. The GAT may no longer be reliable. If the problem recurs, use a different drive or different diskette.

HIT read error (Error 22, X'16')

A disk error occurred during the reading of the Hash Index Table. The problem may be media, hardware, or program failure. Move the diskette to another drive and try the operation again.

HIT write error (Error 23, X'17')

A disk error occurred during the writing of the Hash Index Table. The HIT may no longer be reliable. If the problem recurs, use a different drive or different diskette.

Illegal access attempted to protected file (Error 37, X'25')

The USER password was given for access to a file, but the requested access required the OWNER password. (See the ATTRIB library command in your Disk System Owner's Manual.)

Illegal drive number (Error 32, X'20')

The specified disk drive is not included in your system or is not ready for access (no diskette, non-TRSDOS diskette, drive door open, and so on). See the DEVICE command in your *Disk System Owner's Manual*.)

Illegal file name (Error 19, X'13')

The specified filespec does not meet TRSDOS filespec requirements. See your Disk System Owner's Manual for proper filespec syntax.

Illegal logical file number (Error 16, X'10')

A bad Directory Entry Code (DEC) was found in the File Control Block (FCB). This usually indicates that your program has altered the FCB improperly. Check for an error in your application program.

Load file format error (Error 34, X'22')

An attempt was made to load a file that cannot be loaded by the system loader. The file was probably a data file or a BASIC program file.

Lost data during read (Error 3, X'03')

During a sector read, the CPU did not accept a byte from the Floppy Disk Controller (FDC) data register in the time allotted. The byte was lost. This may indicate a hardware problem with the drive. Move the diskette to another drive and try again. If the error recurs, try another diskette.

Lost data during write (Error 11, X'0B')

During a sector write, the CPU did not transfer a byte to the Floppy Disk Controller (FDC) in the time allotted. The byte was lost; it was not transferred to the disk. This may indicate a hardware problem with the drive. Move the diskette to another drive and try again. If the error recurs, try another diskette.

LRL open fault (Error 42, X'2A')

The logical record length specified when the file was opened is different than the LRL used when the file was created. COPY the file to another file that has the specified LRL.

No device space available (Error 33, X'21')

You tried to SET a driver or filter and all of the Device Control Blocks were in use. Use the DEVICE command to see if any non-system devices can be removed to provide more space. This error also occurs on a "global" request to initialize a new file (that is, no drive was specified), if no file can be created.

No directory space available (Error 26, X'1A')

You tried to open a new file and no space was left in the directory. Use a different disk or REMOVE some files that you no longer need.

No error (Error 0)

The @ERROR supervisor call was called without any error condition being detected. A return code of zero indicates no error. Check for an error in your application program.

Parameter error (Error 44,X'2C')

(Under Version 6.2 only) An error occurred while executing a command line or utility because a parameter that does not exist was specified. Check the spelling of the parameter name, value, or abbreviation.

Parity error during header read (Error 1, X'01')

During a sector I/O request, the system could not read the sector header successfully. If this error occurs repeatedly, the problem is probably media or hardware failure. Try the operation again, using a different drive or diskette.

Parity error during header write (Error 9, X'09')

During a sector write, the system could not write the sector header satisfactorily. If this error occurs repeatedly, the problem is probably media or hardware failure. Try the operation again, using a different drive or diskette.

Parity error during read (Error 4, X'04')

An error occurred during a sector read. Its probable cause is media failure or a dirty or faulty disk drive. Try the operation again, using a different drive or diskette.

Parity error during write (Error 12, X'0C')

An error occurred during a sector write operation. Its probable cause is media failure or a dirty or faulty disk drive. Try the operation again, using a different drive or diskette.

Program not found (Error 31, X'1F')

The file cannot be loaded because it is not in the directory. Either the filespec was misspelled or the disk that contains the file was not loaded.

Protected system device (Error 40, X'28')

You cannot REMOVE any of the following devices: *KI, *DO, *PR, *JL, *SI, *SO. If you try, you get this error message.

Record number out of range (Error 29, X'1D')

A request to read a record within a random access file (see the @POSN supervisor call) provided a record number that was beyond the end of the file. Correct the record number or try again using another copy of the file.

Seek error during read (Error 2, X'02')

During a read sector disk I/O request, the cylinder that should contain the sector was not found within the time allotted. (The time is set by the step rate specified in the Drive Code Table.) Either the cylinder is not formatted or it is no longer readable, or the step rate is too low for the hardware to respond. You can set an appropriate step rate using the SYSTEM library command. The problem may also be caused by media or hardware failure. In this case, try the operation again, using a different drive or diskette.

Seek error during write (Error 10, X'0A')

During a sector write, the cylinder that should contain the sector was not found within the time allotted. (The time is set by the step rate specified in the Drive Code Table.) Either the cylinder is not formatted or it is no longer readable, or the step rate is too low for the hardware to respond. You can set an appropriate step rate using the SYSTEM library command. The problem may also be caused by media or hardware failure. In this case, try the operation again, using a different drive or diskette.

- Unknown error code

The @ERROR supervisor call was called with an error number that is not defined. Check for an error in your application program.

Write fault on disk drive (Error 14, X'0E')

An error occurred during a write operation. This probably indicates a hardware problem. Try a different diskette or drive. If the problem continues, contact a Radio Shack Service Center.

Write protected disk (Error 15, X'0F')

You tried to write to a drive that has a write-protected diskette or is software write-protected. Remove the write-protect tab, if the diskette has one. If it does not, use the DEVICE command to see if the drive is set as write protected. If it is, you can use the SYSTEM library command with the (WP = OFF) parameter to write enable the drive. If the problem recurs, use a different drive or different diskette.

Numerical List of Error Messages

Decimal	Hex	Message
0	X,00,	No Error
1	X'01'	Parity error during header read
2	X'02'	Seek error during read
3	X,03,	Lost data during read
4	X'04'	Parity error during read
5	X'05'	Data record not found during read
6	X'06'	Attempted to read system data record
7	X'07'	Attempted to read locked/deleted data record
8	X'08'	Device not available
9	X,03,	Parity error during header write
10	X'0A'	Seek error during write
11	X'0B'	Lost data during write
12	X'ØC'	Parity error during write
13	X,0D,	Data record not found during write
14	X,0E,	Write fault on disk drive
15	X'ØF'	Write protected disk
16	X'10'	Illegal logical file number
17	X'11'	Directory read error
18	X'12'	Directory write error
19 20	X'13'	Illegal file name
20 21	X'14'	GAT read error
22	X'15' X'16'	GAT write error
23	X 16 X 17'	HIT read error
23 24	X'18'	HIT write error
25	X'19'	File not in directory File access denied
26	X'1A'	
27	X'1B'	No directory space available Disk space full
28	X'1C'	End of file encountered
29	X'1D'	Record number out of range
30	X'1E'	Directory full—can't extend file
31	X'1F'	Program not found
32	X'20'	Illegal drive number
33	X'21'	No device space available
34	X'22'	Load file format error
37	X'25'	Illegal access attempted to protected file
38	X'26'	File not open
39	X'27'	Device in use
40	X'28'	Protected system device
		•

41	X'29'	File already open
42	X'2A'	LRL open fault
43	X'2B'	SVC parameter error
44	X'2C'	Parameter error
63	X'3F'	Extended error
		Unknown error code

Appendix B/Memory Map

All software must observe HIGH\$.

User software which does not allow TRSDOS library commands to be executed during run time may use memory from 2600H to HIGH\$.

User software which allows for library commands during execution must reside in and use memory only between 3000H and HIGH\$.

TRSDOS provides all functions and storage through supervisor calls. No address or entry point below 3000H is documented by Radio Shack.

		(

Appendix C/Character Codes

Text, control functions, and graphics are represented in the computer by codes. The character codes range from zero through 255.

Codes one through 31 normally represent certain control functions. For example, code 13 represents a carriage return or "end of line." These same codes also represent special characters. To display the special character that corresponds to a particular code (1-31), precede the code with a code zero.

Codes 32 through 127 represent the text characters — all those letters, numbers, and other characters that are commonly used to represent textual information.

Codes 128 through 191, when output to the video display, represent 64 graphics characters.

Codes 192 through 255, when output to the video display, represent either space compression codes or special characters, as determined by software.

ASCII Character Set

Co Dec.	de Hex.	ASCII Abbrev.	Keyboard	Video Display
0	00	NUL	CTRL)@	Treat next character as dis- playable; if in the range 1-31, a special character is dis- played (see list of special characters later in this Appendix).
1	01	SOH	(CTRL)(A)	
2	02	STX	CTRL B	
3	03	ETX	CTRL C	
4	04	EOT	CTRL D	
5	Ø 5	ENQ	CTRLE	
6	Ø6	ACK	CTRL (F)	
7	07	BEL BS	CTRL)G	Backspace and erase
8	08	B5	(4) CTRL)(H)	backspace and erase
9	ø 9	HT	(TRL)(I)	
10	ØΑ	LF	•	Move cursor to start of next
,,,	0, .	-	(CTRL)(J)	iine
11	ØВ	VT	© CTRL(K)	
12	ØC	FF	CTRL)(L)	
13	ØD	CR	ENTER	Move cursor to start of next
			CTRL (M)	line
14	ØΕ	so	CTRLN	Turn cursor on
15	ØF	SI	CTRLO	Turn cursor off
16	10	DLE	CTRL(P)	Enable reverse video and set high bit routine on*
17	11	DC1	CTRL)(Q)	Set reverse video high bit routine off*
18	12	DC2	CTRL/R)	
19	13	DC3	CTRLS	
20	14	DC4	CTRL T	Swon anger compression/
21	15	NAK	CTRL)(U)	Swap space compression/ special characters
22	16	SYN	CTRL (V)	Swap special/alternate characters
23	17	ETB	(CTRL)(W)	Set to 40 characters per line
23 24	18	CAN	SHIFT (4)	Backspace without erasing
			CTRL(X)	•
25	19	EM	SHIFT (P) CTRL (Y)	Advance cursor
26	1A	SUB	SHIFT • CTRL Z	Move cursor down
27	1B	ESC	SHIFT • CTRL)	Move cursor up
28	1C	FS	CTRL)(7)	Move cursor to upper left corner. Disable reverse video and set high bit rou- tine off. Set to 80 charac- ters per line.
29	1D	GS	(CTRL)(ENTER) (CTRL)(.)	Erase line and start over
30	1E	RS	CTRD:	Erase to end of line

^{*}When the high bit routine is on, characters 128 through 191 are displayed as standard ASCII characters in reverse video.

Cod Dec.	e Hex.	ASCII Abbrev.	Keyboard	Video Display
31 32 33 34 53 36 37 38 39 40 41 42 44 44 45 55 55 55 55 55 55 56 66 67 77 77 77 77 77 77 77 77 77 77 77	1F0 21 22 3 24 25 66 7 8 9 ABC DEF 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	VS SPA	SHIP CLEAR SPACEBAR T SPACEBAR SPACEB	Erase to end of display (blank) ! # \$ % &. ()) + ,

Co Dec.	de Hex.	ASCII Abbrev.	Keyboard	Video Display
90	5A		(SHIFT)(Z)	Z
91	5B		CLEAR 1	Ĩ
92	5C		(CLEAR) (7)	
93	5D		CLEAR).	j /
94	5E		CLEAR :	,
95	5F		CLEAR ENTER	
96	60		SHIFT@	
97	61		<u>A</u>	а
98	62		B	b
99	63		C	С
100	64		0	d
101	65		(E)	е
102	66		Ē	f
103	67		<u>G</u>	g h
104	68		H	h
105	69		(I)	!
106	6A		①	į
107	6B		®	k
108	6C		©	
109	6D		(M)	m
110	6E 6F		(N) (O)	n
111	70		(P)	0
112 113	71		0	p
114	72		®	q r
115	73		(h) (S)	S
116	73 74		1	t
117	75		0	u
118	76		v	v
119	77		W	w
120	78		X	X
121	79		$\widetilde{\mathbf{Y}}$	у
122	7A		(Z)	ž
123	7B		CLEAR SHIFT .	{
124	7C		CLEAR SHIFT	
125	7D		CLEAR SHIFT .	}
126	7E		CLEAR SHIFT :	•
127	7F	DEL	(CLEAR)(SHIFT)(ENTER)	±

Extended (non-ASCII) Character Set

Co	ode		
Dec.	Hex.	Keyboard	Video Display
128	80	(BREAK)	· · · · · · · · · · · · · · · · · · ·
129	81	(F1)	
		CLEAR CTRL (A)	
130	82	(F2)	
		CLEAR CTRL B	
131	83	<u>F3</u>	
400		CLEAR CTRL C	
132	84	CLEAR CTRL D	
133 134	85	CLEAR CTRL E	
135	86	CLEAR CTRL (F)	
136	87 88	CLEARICTALIG	
137	89	CLEAR CTRL (H)	
138	8A	(CLEAR)(CTRL)(I)	×
139	8B	CLEAR CTRL)(J) CLEAR (CTRL)(K)	<u> </u>
140	8C	CLEAR CTRL (L)	<u>B</u>
141	8D	CLEAR CTRL (M)	Q
142	8E	CLEAR CTRL N	<u>. v</u>
143	8F	CLEAR CTRL (I)	₽
144	90	CLEAR (CTRL)(P)	<u>=</u>
145	91	(SHIFT)(F1)	ple
		CLEAR (CTRL)(Q)	क
146	92	(SHIFT)(F2)	र्षे
		CLEAR CTRL (R)	ge
147	93	SHIFT (F3)	ਬੁੱ
		CLEAR CTRL (S)	ਰ
148	94	(CLEAR)(CTRL)(T)	See graphics character table in this Appendix.
149	95	CLEAR CTRL (U)	<u>5</u>
150	96	CLEAR CTRL V	<u> </u>
151	97	CLEAR CTRL W	g.
152	98	CLEAR CTRL X	ഗ്ഗ്
153	99	CLEAR CTRL (Y)	
154	9A	CLEAR CTRL (Z)	
155	9B	CLEAR SHIFT •	
156	9C		
157 158	9D 9E		
159	9F		
160	AØ	(CLEAR)(SPACE)	
161	A1	(CLEAR)(SHIFT)(1)	
162	A2	CLEAR (SHIFT) (2)	
163	A3	CLEAR (SHIFT) (3)	
164	A4	CLEAR (SHIFT) (4)	
165	A5	CLEAR (SHIFT)(5)	
166	A6	CLEAR (SHIFT) (6)	
167	A7	CLEAR (SHIFT) (7)	
168	A8	CLEAR (SHIFT) (8)	
169	A9	CLEAR SHIFT 9	
170	AA	CLEAR SHIFT :	
171	AB		
172	AC		
173	AD	CLEAR) —	
174	ΑE		
175	AF	(ALTINA)	
176 177	BØ B1	CLEAR (0)	
178	B2	CLEAR (1)	
170	عد	CLEAR)(2)	

С	ode		
Dec.	Hex.	Keyboard	Video Display
179	В3	CLEAR)(3)	_
180	B4	CLEAR 4	See graphics character table in this Appendix.
181	B5	CLEAR (5)	æ
182	B6	CLEAR) (6)	72
183	B7	CLEAR)(7)	cte
184	B8	CLEAR 8	Ĩ
185	B9	CLEAR)(9)	<u>e</u>
186	BA	CLEAR :	S ≧
187	BB		는 있다.
188	BC		See graphics (this Appendix
189	BD	CLEAR (SHIFT) (-)	g A
190	BE		ee Jis
191	BF		o ≠
192	CØ	CLEAR @*	
193	C1	CLEAR (A)**	
194	C2	CLEAR B**	
195	C3	CLEAR C **	
196	C4	CLEAR (D**	
197	C5	CLEAR E **	
198	C6	CLEAD(I)**	
199 200	C7 C8	CLEARIG)**	
201	C9	CLEAR(H)** CLEAR(I)**	
202	CA	CLEAR)(J)**	ئ
203	CB	CLEAR(K)**	÷
204	CC	CLEAR)(L)**	<u> </u>
205	CD	(CLEAR)(M)**	See list of special characters in this Appendix
206	CE	CLEAR (N)**	∢
207	CF	CLEAR (O)**	Ĕ
208	DØ	CLEAR (P)**	.⊑
209	D1	CLEAR Q)**	S
210	D2	CLEAR (R)**	쁑
211	D3	CLEAR)(S)**	<u>ā</u>
212	D4	CLEAR (T)**	25
213	D5	CLEAR)(U)**	~
214	D6	CLEAR)(V)**	- <u>15</u>
215	D7	CLEAR)(W)**	ğ
216	D8	CLEAR)(X)**	<u>5</u>
217	D9	CLEAR)(Y)**	76
218	DA	CLEAR (Z)**	<u>=</u>
219	DB		ě
220	DC		U)
221	DD		
222	DE		
223	DF		
224	EØ	CLEAR SHIFT @	
225	E1	CLEAR (SHIFT) (A)	
226	E2	CLEAR SHIFT B	
227	E3	CLEAR SHIFT C	
228	E4	CLEAR (SHIFT) (D)	
229	E5	CLEAR SHIFT E	
230	E6	CLEAR SHIFT F	
231	E7	CLEAR SHIFT G	
232	E8	CLEAR SHIFT H	
233	E9	CLEAR SHIFT (I)	
234	EA	CLEAR (SHIFT) (J	

^{*}Empties the type-ahead buffer.
**Used by Keystroke Multiply, if KSM is active.

Co	ode		
Dec.	Hex.	Keyboard	Video Display
235	EB	(CLEAR)(SHIFT)(K)	. :
236	EC	(CLEAR)(SHIFT)(L)	÷
237	ED	CLEAR (SHIFT) (M)	е
238	EE	CLEAR (SHIFT)(N)	ď
239	EF	CLEAR SHIFT (I)	in this Appendix
240	FØ	CLEAR)(SHIFT)(P)	Ĕ
241	F1	CLEAR SHIFT (I)	Ę
242	F2	CLEAR SHIFT (R)	
243	F3	CLEAR SHIFT S	special characters
244	F4	CLEAR SHIFT (T)	ľa
245	F5	CLEAR (SHIFT) (U)	ng.
246	F6	CLEAR (SHIFT) (V)	<u> </u>
247	F7	CLEAR (SHIFT) W	<u>.<u>w</u></u>
248	F8	CLEAR (SHIFT) (X)	ĕ
249	F9	CLEAR SHIFT Y	
250	FA	CLEAR (SHIFT) (Z)	ĵo .
253	FD		<u>ii:</u>
254	FE		See
255	FF		ഗ്

Graphics Characters (Codes 128-191)

Appendix D/Keyboard Code Map

The keyboard code map shows the code that TRSDOS returns for each key, in each of the modes: control, shift, unshift, clear and control, clear and shift, clear and unshift.

For example, pressing $\overline{\text{CLEAR}}$, $\overline{\text{SHIFT}}$, and $\overline{\text{1}}$ at the same time returns the code X'A1'

A program executing under TRSDOS — for example, BASIC — may translate some of these codes into other values. Consult the program's documentation for details.

BREAK Key Handling

The (BREAK) key (X'80') is handled in different ways, depending on the settings of three system functions. The table below shows what happens for each combination of settings.

Break Enabled	Break Vector Set	Type- Ahead Enabled	
Υ	N	Υ	If characters are in the type-ahead buffer, then the buffer is emptied.*
			If the type-ahead buffer is empty, then a BREAK character (X'80') is placed in the buffer.*
Υ	N	N	A BREAK character (X'80') is placed in the buffer.
Y	Y	Y	The type-ahead buffer is emptied of its contents (if any), and control is transferred to the address in the BREAK vector (see @BREAK SVC).*
Υ	Υ	N	Control is transferred to the address in the BREAK vector (see @BREAK SVC).
N	Х	Х	No action is taken and characters in the type- ahead buffer are not affected.

^{*}Because the (REAK) key is checked for more frequently than other keys on the keyboard, it is possible for (REAK) to be pressed after another key on the keyboard and yet be detected first.

Y means that the function is on or enabled

N means that the function is off or disabled

X means that the state of the function has no effect

Break is enabled with the SYSTEM (BREAK = ON) command (this is the default condition).

The break vector is set using the @BREAK SVC (normally off).

Type-ahead is enabled using the SYSTEM (TYPE=ON) command (this is the default condition).

					12						
		69	69	٥.	JMAR.						
8	# 68	ľ	. J								
	~ ± ∞	68	. 68	QQ	5 g						
		89	8 38	6	_		!-				
20 20 20	2D 80				E E		SHIFT				
C)	11	88	88		ENTER		S				
ΑĐ	, G8	5	9 5				11. 11.				
`	3 A E	i	_©	8	7F 5F	10	3F	_ ا	4	_	"
	* **	6	2 2	#	2B 3B	, '		١٠	_		0,
BA	AA BA	122	26	İ	+	JL QL	5 5	_	-		20
30	+ 8°	1	۵.	무	7E 5E	1	, H H	99	20		2
••	· "	98	7.0 0.0	၁၀	ე ე	ا ا	5 G				
80	A B	10 E	4F 6F			18 10	3C 7				
39	3 8	1	0	8	<u> </u>	Γ.	m Ñ				
	~ნ	8	EF CF	8	4E:	12	8.88	ĺ			
B3	A9 B9	60	49		¥	- Gg	- 6 6	1			
88	88	1	_	88	8 8	3	Σ 4 θ				
	~ ∞	88	83 63	94	44 6A	80	8 8				
88	A8 B8	15	55		٠,	ØE 8	# H 0	1			
37	27	1	\supset	84	C E	"	S 4 0				
		95	5. S	88	48	BE	 				
87	A7 B7	19	59		I	92	6 42	1			
36	36	1	>	88	88		ω				
	ø 9	66	5 60	6	47	82	- 22 23				
98	A6 B6	7.	54		ຫຼ	16	26	1			
32	8 23	1	-	87	C E		>				
	% ದು	94	F4 D4	8	46	96	F6 D6				
SB	A5 B5	12	52	[,	LL (0 (0	693	63	1			
34	34]	α α	4 86	8 8	-	ပ				
	⊕ 4	95	5 E2	94	4 2	83	8 8				
84	A4 B4	65	₩ B		U	18	78	İ			
33	23		Ш	13 84	53 E4	1	×				
	# m	88	8 8	۲		86	F8 D8	80	;	Ā	AØ
83	A3	7	1 57	8	တ္က	4	5A 7A	Τ			
32	32		8 .	1 93	T E3	1	7	١ ر	ا	α	ب:
	: 2	1 97	5 6	=	14	94	FA DA				
82	A2 B2	F	2.5	-	٧			T			
31	27	-	a L	4 81	1A E1	1	L	1			
	~	91	1.2	0A	ھ ج		SHIFT				
B1	A E	8	18	4	→ A8		S				
		88	+ 88 88	8	on 00			1			

des.
me co
the sar
uce th
Ď.
ey p
er, they pr
Š
운
y on your keyboard. Howe
keyb
/our
no O
ently
liffer
ped
e keys may be positione
od e
ay be
/s m
e key
Ĕ

83 82

82 81 6

œ

7

9

S

4

Codes for these keys are the same as for the main keyboard. † Pressing SHIFT and Ø at the same time (or CAPS alone) turns the 11 Pressing CONTROL and : at the same time causes a screen print. 111 Pressing SHIFT and BREAK at the same time reselects the last drive. CAPS mode on or off. Shift Unshift Pressing CONTROL, SHIFT, and Control @ at the same time generates an Whenever pressing CLEAR, SHIFT, and another key at the same time, be sure to use the <u>left</u> SHIFT key — not the right SHIFT key. EOF (end of file) - - X'1C' with NZ return flag. Clear and Left Shift • Clear and Unshift • Clear and Control LEGEND: Note:

ENT

10

က

8

Appendix E/Programmable SVCs

(Under Version 6.2 only)

SVC numbers 124 through 127 are reserved for programmer installable SVCs. To install an SVC the programmer must write the routine to execute when the SVC is called.

The routine should be written as high memory module if it is to be available at all times. If you execute a SYSGEN command when a programmable SVC is defined, the address of the routine is saved in the SYSGEN file and restored each time the system is configured. If the routine is a high memory module, the routine is saved and restored as well. This makes the SVC always available. For more information on high memory modules, see Memory Header and Sample Program F.

To install an SVC, the program must access the SVC table. The SVC table contains 128 two-byte positions, a two-byte position for each usable SVC. Each position in the table contains the address of the routine to execute when the SVC is called.

To access the SVC table, execute the @FLAGS SVC (SVC 101). IY + 26 contains the MSB of the SVC table start address. The LSB of the SVC table address is always 0 because the SVC table always begins on a page boundary.

Store the address of the routine to be executed at the SVC number times 2 byte in the table. For example, if you are installing SVC 126, store the address of the routine at byte 252 in the table. Addresses are stored in LSB-MSB format.

When the SVC is executed, control is transferred to the address in the table. On entry to your SVC, Register A contains the same value as Register C All other registers retain the values they had when the RST 28 SVC instruction was executed.

To exit the SVC, execute a RET instruction. The program should save and restore any registers used by the SVC.

Initially, SVCs 124 through 127 display an error message when they are executed. When installing an SVC you should save the original address at that location in the table and restore it when you remove the SVC.

These program lines insert a new SVC into the system SVC table, save the previous value of the table, and reinsert that value before execution ends. You could check the existing value to see if the address is above X'2600'. If it is, the SVC is already assigned and should not be used at this time.

This code inserts SVC 126, called MYSVC:

LD RST	A,@FLAGS 28H	;Locate start of SVC table :Execute @ FLAGS SVC
LD	H,(IY + 26)	Get MSB of address
LD	L,126*2	;Want to use SVC 126
LD	(OSVC126A),HL	;Save address of SVC entry
LD	E,(HL)	;Get current SVC address
INC	HL	
LD	D,(HL)	
LD	(OSVC126V),DE	;Save the old value
DEC	HL	
LD	DE,MYSVC	;Get address of routine for ;SVC 126
LD	(HL),E	;Insert new SVC address into :table
INC	HL	

LD (HL),D
.
. Code that uses MYSVC (SVC 126)

This code removes SVC 126:

l D	HL.(OSVC126A)	:Get address of SVC entry
LD	DE.(OSVC126V)	:Get original value
ID	(HL),E	Insert original SVC address
INC	HL	,
LD	(HL).D	

Appendix F/Using SYS13/SYS

(Under Version 6.2 only)

With TRSDOS Version 6.2, you can create an Extended Command Interpreter (ECI) or an Immediate Execution Program (IEP). TRSDOS can store either an ECI or IEP in the SYS13 file. Both programs cannot be present at the same time.

At the TRSDOS Ready prompt when you type • (ENTER), TRSDOS executes the program stored in SYS13/SYS Because TRSDOS recognizes the program as a system file, TRSDOS includes the file when creating backups and loads the program faster.

If you want to write additional commands for TRSDOS, you can write an interpreter to execute these commands. Your ECI can also execute TRSDOS commands by using the @CMNDI SVC to pass a command to the TRSDOS interpreter.

If EFLAG\$ contains a non-zero value, TRSDOS executes the program in SYS13/SYS. If EFLAG\$ contains a zero, TRSDOS uses its own command interpreter.

Sample Program G is an example of an ECI. It is important to note that your ECI must be executable by pressing * (ENTER) at the TRSDOS Ready prompt

An ECI can use all of memory or you can restrict it to use the system overlay area (X'2600' to X'2FFF').

To implement an IEP or ECI, use the following syntax:

COPY filespec SYS13/SYS LSIDOS:drive (C = N) (ENTER)

filespec can be any executable (/CMD) program file. drive specifies the destination drive. The destination drive must contain an original SYS13/SYS file.

Example

COPY SCRIPSIT/CMD:1 SYS13/SYS.LDI:0 (C = N)

TRSDOS copies SCRIPSIT/CMD from Drive 1 to SYS13/SYS in Drive 0. At the TRSDOS Ready prompt, when you press (**) (ENTER), TRSDOS executes SCRIPSIT.

		(
		7

Subject	Page	Subject	Page
@ABORT	48	interfacing to device drivers	42-44
Access		Cylinder	
device		highest numbered	
drive		number of	
file	4	position, current	
@ADTSK		starting	25
Alien disk controller	12	@DATE	
Allocation		@DCINIT	
dynamic		@DCRES	
information		@DCSTAT	
methods of		DEBUG	
pre		@DEBUG	
unit of		@DECHEX	
ASCII codes		Density, double and single	1, 11, 18
Background tasks, invoking		Device	
@BANK		access	
Bank switching		handling	
@BKSP		NIL	
BOOT/SYS	5	Device Control Block (DCB)	
BREAK		Device driver	
detection		address	
key handling		COM	
@BREAK	53	@CTL interfacing to	
Byte I/O	40-42	keyboard	
Characters		printer	
ASCII		templates	
codes		video	
graphics2	05-06, 208	Devspec	9
special		Directory	0.40
@CHNIO		location on disk	
@CKDRV		primary and extended entries	
@CKBRKC			16, 20
@CKEOF		record, locating a	
@CKTSK		records (DIREC)	
Clock rate, changing		sectors, number of Directory Entry Code (DEC)	
@CLOSE		Directory Entry Code (DEC)	
@CLS		@DIRRD	20, 24
@CMNDI		DIR/SYS	
@CMNDR	04	@DIRWR	
Codes ASCII	202.04	<u> </u>	
character		Disk, diskette controller	12
error		double-sided	
graphics2		files	
keyboard	211-12	floppy	
return	20	formatting	
special character 206-	07 200-10	hard	
Converting to TRSDOS Version 6	27-29	I/O table	
CREATEd files		minimum configuration	
@CTL 40	0-42 65-66	name	
(WOIL 40	, 42, 00-00	Hallic	10

Subject	Page	Subject	Page
organization single-sided 11-12 space, available @DIV8 @DIV16 @DODIR Drive access address floppy hard size Drive Code Table DCT Driver — see Device driver @DSP @DSPLY End of File (EOF) Ending Record Number (ERN) ENTER detection Error codes and messages dictionary @ERROR @EXIT Extended Command Interpreter @FEXT File access descriptions, TRSDOS modification File Control Block (FCB) Files CREATEd device driver filter system (/SYS) utility Filter templates Filters 7, example of FLAGS 22 @FNAME @FSPEC @GET 4		contents of Graphics characters, printing codes @GTDCB @GTDCT @GTMOD Guidelines, programming Hash code Hash Index Table (HIT) location on disk explanation of @HDFiviT @HEXDEC @HEX8 @HEX16 @HIGH\$ @ICNFG, interfacing to Immediate Execution Program @INIT Initialization configuration vector Interrupt tasks @IPL Job Control Language (JCL) @KBD @KEY Keyboard codes @KEYIN KFLAG\$ @KITSK, interfacing to @KITSK Library commands technical information on @LOAD @LOC @LOF LOG utility @LOGER Logical Record Length (LRL) @LOGOT Memory banks — see RAM ba Memory header Memory map	16-18 190 205-06, 208 91 92 93 27-44 15, 18 2 18-19 95 96 97 98 32-33 215 99 32-33 34-36 100 6, 28 101 102 211-12 103 29 33-34 104 28 189-91 105 106 107 190 108 15, 24 109 anks 10, 27
@GET 4 Gran, granule allocation information definition per track Granule Allocation Table (GAT)	0-42, 90 25 2, 17	Memory map	
location on disk		Next Record Number (NRN)	24

Subject	Page	Subject Page
NIL device @OPEN Overlays, system @PARAM Password for TRSDOS files protection levels @PAUSE PAUSE detection @PEOF @POSN @PRINT Printing Graphics Characters Programming Guidelines Protection Levels ### 40 RAM Banks switching use of @RAMDIR @RDHDR @RDBEC @RDSC @RDTRK @READ Record length logical and physical numbers processing spanning @REMOV @RENAM	9 113 5-6, 19 114-15 8 14, 24 116 29-32 117 118 190 27-44 4, 24, 27 120 42, 121 36-39 50-51 122 123 124 125 126 127 128 128 129	C 168 D 175 E 177 F 178 G 187 Sectors per cylinder 14, 19 per granule 1-2, 12 @SEEK 138 @SEEKSC 139 @SKIP 140 @SLCT 141 @SOUND 142 Special Character Codes 206-07, 209-10 Stack handling 28 Step rate 11 changing 189 @STEPI 143 Supervisor calls (SVCs) calling procedure 45 lists of 46-47, 155-57, 158-59 program entry and return conditions 45 sample programs using 160-183 using 45-183 SYS files 5-6, 7-8, 19 System files 5-6, 7-8, 19 System files 5-6, 7-8, 19 System files 5-6, 7-8, 19 Task interrupt level, adding 49 slots 34, 35, 49 Task Control Block (TCB) 34, 35, 49 Vector Table (TCBVT) 34, 35
processing spanning @REMOV @RENAM Restart Vectors (RSTs)	4 3-4 128 129	interrupt level, adding 49 slots 34, 35, 49 Task Control Block (TCB) 34, 35, 49 Vector Table (TCBVT) 34, 35 Task processor, interfacing to 34-36
Return Code (RC) @REW @RMTSK @RPTSK @RREAD RS-232	28 130 131 132	@TIME 144 TRSDOS converting to Version 6 27-28 error messages and codes 193-97 file descriptions 5-8 technical information on
initializing COM driver for @RSLCT @RSTOR @RUN @RWRIT Sample Programs A B	. 43-44 134 135 136 137 160-83 161	commands and utilities 189-91 TYPE code 23 @VDCTL 145-46 @VER 147 Version, operating system 17 Visibility 14 @VRSEC 148 WAIT value, changing 190 @WEOF 149

Subject	Page	Subject	Page
@WHERE @WRITE Write Protect	150	@WRSEC @WRSSC	

Subject	Page	Subject	Page

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102 CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION

AUSTRALIA BELGIUM U. K.

91 KURRAJONG AVENUE PARC INDUSTRIEL BILSTON ROAD WEDNESBURY
MOUNT DRUITT, N.S.W. 2770 5140 NANINNE (NAMUR) WEST MIDLANDS WS10 7JN

